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Estimating basis functions for spectral sensitivity of digital cameras
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Abstract Spectral sensitivity of digital cameras plays an important role for many computer vision applications.
However, less attention has been drawn on estimating the spectral sensitivity of commercial cameras, and there
is neither comprehensive analysis of those spectral characteristics. This paper investigates the characteristics by
extracting the basis functions of them by using SVD (Singular Value Decomposition); we have collected data from
the literature but also by measuring the sensitivity of different cameras. This paper compares the extracted basis
functions with different mathematical basis functions and obtains the optimum set of basis functions. The extracted
basis functions can be used to estimate the unknown spectral sensitivity of an arbitrary camera.
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1. Introduction

Spectral sensitivity of digital cameras is non-trivial
information for many computer vision applications. Dif-
ferent cameras usually produce differently-colored im-
ages for the same scene, regardless of how well adjusted
the white balance is, due to the difference in the spectral
sensitivity. When the spectral sensitivities of those cam-
eras are known, color of one camera can be converted
into that of the other. This would help a number of
applications based on colors such as object recognition,
object detection, image retrieval, etc. Several methods
of physics-based vision also require spectral sensitivity.

While much attention has been paid for camera
response-curve estimation [1], less has been drawn on
estimating the spectral sensitivity. A common way to
obtain the spectral sensitivity is to use a monochrome-
ter [2]; spectral response of a camera can be measured
by taking images of a light whose wavelength is tuned
by a monochrometer. Hardeberg et al. proposed a
method that estimates spectral sensitivity by inverting
the system of linear equations obtained by image inten-
sities and known spectral reflectances [3], while it has
not been applied to real data because of the instability.

Regarding the analysis of natural spectra, a number
of studies have been investigated. Judd et al. [4] and
Slater et al. [5] have analyzed the basis functions of out-
door illumination spectra; both of them concluded that
the first three bases dominantly covers the entire spce-
tral distributions. Several researchers have analyzed the
reflectance of Munsell color chips and extracted the first
four to eight basis functions [6] [7].

This paper investigates basis functions for spectral

sensitivity of cameras. In order to extract basis func-
tions, the SVD (Singular Value Decomposition) is per-
formed to the data that are collected from the literature
and our experiments. The extracted set of basis func-
tions are compared to mathematical basis functions by
applying them to recover the unknown spectral sensi-
tivity from the set of image intensities and spectra.

The rest of the paper is organized as follows: Sec-
tion 2 describes the benefits of using basis functions
for spectral sensitivity estimation. Section 3 introduces
several basis functions that should be suitable for spec-
tral sensitivity estimation. Experiments and the results
are explained in Section 4, and we conclude our paper
in Section 5.

2. Benefits of Using Basis Functions for
Spectral Sensitivity Estimation

Basis functions reduces the dimension of spectral sen-
sitivity, because the number of basis functions required
are much less than the dimension of sensitivity itself.
This reduces the number of unknowns in estimating sen-
sitivity, and thus it provides more accurate results.

2. 1 Image Formation

The image intensity is related to the incoming spec-
trum and the spectral sensitivity of a camera. Con-
cretely, it can be described as

Ic =
∫

L(λ)qc(λ)dλ, (1)

where L(λ) is the incoming spectrum, qc(λ) and Ic are
the spectral sensitivity and the image intensity for R,
G and B channels. The index c stands for R,G and B.



If we discretize Equation (1), then it becomes

Ic =
W∑

λ=1

Lλqcλ. (2)

where λ is the index, W is the total number of ele-
ments, Lλ and qcλ are sampled values of L(λ)/dλ and
qc(λ), and dλ is the sampling interval.

2. 2 Recovering Spectral Sensitivity

If we use a vector notation to Equation (2), it can be
converted to

Ic = [L1, · · · , LW ][qc1, · · · , qcW ]t. (3)

Let us suppose that we have a set of incoming spectra
and corresponding image intensities. Then, Equation
(3) becomes as follows by using a matrix notation:

I = LQ (4)

where I is an N × 1 matrix of image intensities (N is
the number of different images), L is an N ×W matrix
of spectra (W is the number of samplings), and Q is an
W × 1 matrix of spectral sensitivity.

When I and L are known, Q can be solved as follows:

Q = L+I (5)

where L+ is the psuedo inverse of L and is equal to
(LtL)−1Lt.

Here, the size of the matrix LtL is W × W . In order
to calculate the inverse matrix of LtL robustly, its rank
should be W . However, the rank of L is at most N when
N is smaller than W . This happens when the number
of samplings is more than the number of images. Then,
the calculation of the inverse matrix becomes unstable.

2. 3 Benefits of Using Basis Functions

Spectral sensitivity can be robustly estimated from
Equation (4) by using the basis functions of spectral
sensitivity owing to its low dimensionality. Let us as-
sume that the spectral sensitivity can be approximated
by a linear combination of a small number of basis func-
tions:

q(λ) =
D∑

i=1

qiQi(λ) (6)

where D is the number of basis functions, qi is the co-
efficient and Qi(λ) is the basis function.

By substituting the equation into Equation (1), we
can derive

R =
∫

L(λ)
D∑

i=1

(qiQi(λ))dλ

=
D∑

i=1

qi

W∑
λ=1

L(λ)Qi(λ) (7)

where R is the image intensity for the red channel.
If we use another notation Ei to describe the multipli-

cation of spectrum data and basis function of spectral
sensitivity, namely,

Ei =
W∑

λ=1

L(λ)Qi(λ), (8)

then by substituting Equation (8) into (7), we obtain

R =
D∑

i=1

qiEi. (9)

The same equations for blue and green channels can be
obtained in the same manner.

Now, let us suppose that we have N set of data (image
intensities and spectra). By using the matrix notation,
we can describe Equation (9) as

I = Eq, (10)

where I is the N × 1 matrix, E is the N × D matrix,
and q is the D×1 coefficient matrix. Consequently, this
coefficient matrix q can be expressed as

q = E+I (11)

where E+ is the pseudo inverse of the matrix E.
If the rank of the matrix E is bigger than D, namely,

if the number of images N is bigger than the number
of dimension D, we can robustly estimate a unique so-
lution of coefficient matrix q. Then, we can correctly
recover the spectral sensitivity.

3. Optimum Basis Functions

In order to find the optimum basis functions, we tried
four different kinds of basis functions to describe the
spectral sensitivity, which includes polynomials basis,
fourier series, radial basis functions (RBF), and basis
functions calculated from singular value decomposition
(SVD).

3. 1 Polynomial Basis

Polynomial basis function is expressed as:

F =
D∑

i=0

aiλ
i (12)



where ai is the coefficient. Using this polynomial basis
functions, the spectral sensitivity is describe as a lin-
ear combination of λi (the value of i is from 0 to D)
as shown in Equation (8). The Fig.1 shows the polyno-
mial basis functions. In Fig.1, eight basis functions are
shown with different colors.

Fig. 1 Polynomial basis functions.

3. 2 Fourier Series

The basis functions of fourier series is described as:

F =
D∑

i=0

aisin(iλπ) (13)

where ai is the coefficient. The Fig.2 shows the first
four fourier basis functions, the Fig.3 shows the other
four fourier basis functions.

3. 3 Radial Basis Functions

By using Radial basis functions, the spectral sensitiv-
ity is represented as a sum of D radial basis functions,
each associated with a different center µ, and weighted
by an appropriate coefficient σ. The radial basis func-
tions is written as:

Fig. 2 The first four fourier basis functions.

F =
D∑

i=0

ai exp(− (λ − µi)2

σ2
) (14)

The Figs. 4, 5 and 6 show the RBF basis functions
for RGB channel respectively.

The advantage of using the RBF basis function is that
these basis functions are similar to Gaussian function,
also similar to the shape of spectral sensitivity. Hence,
better results can be obtained by using the RBF basis
function.

3. 4 Basis Functions from Singular Value
Decomposition

We collected several cameras and estimated the spec-
tral sensitivity for these digital cameras. Also we col-
lected a few estimated spectral sensitivity from the liter-
ature. Then we made a database of spectral sensitivity.

By applying the singular value decomposition (SVD)
for the database, we can calculate the eigenvectors and
use these eigenvectors as the basis functions to estimate
the spectral sensitivity of an arbitrary camera. Details
of obtaining the sensitivity database and estimating the
basis functions from the database are explained in the
next section.

4. Experiments

This section shows the results of estimated spectral
sensitivities by using four basis functions described in
the previous section. By comparing the results obtained
with different basis functions, we find the optimum set
of basis functions which has the least error to estimate
the spectral sensitivity for an arbitrary camera.

4. 1 Obtaining Sensitivity Database

In the following experiment, we use the white board
which is illuminated by the monochrometer. The im-
age intensities and spectra of the white board are si-
multaneously captured by cameras and a spectrometer

Fig. 3 The Last four fourier basis functions.



Fig. 4 Red channel of RBF basis functions.

Fig. 5 Green channel of RBF basis functions.

Fig. 6 Blue channel of RBF basis functions.

respectively. The spectral sensitivity is expressed as:

S(λ) =
I(λ)

n ·
∫

L(λ)dλ
(15)

where S(λ) is the spectral sensitivity, I(λ) is the im-
age intensity, L(λ) is the spectrum, and n is a factor
related to the camera aperture, the exposure time and
the electronic amplification (the ISO number).

For red channel of spectral sensitivity, we write the
equation as shown in Equation (16), where N denotes
the number of images taken by a camera. The equa-
tions for blue and green channels can be obtained in
the same way. Image intensity is read from captured
image, and spectrum data are measured by a spectrom-

eter. Thus, the spectral sensitivity is calculated from
the above equation.

IR1

IR2

...
IRN

 =


L1 · SR1

L2 · SR2

...
LN · SRN

 (16)

a ) Intensity Linearization
Before using the image intensity which is read from

images to calculate the spectral sensitivity, we must lin-
earize it first. Because for most cameras, the response
function is not a linear function. For estimating the
response function of these cameras, we use the method
proposed by Takamatsu et al. [1]. This method is based
on probabilistic intensity similarity measure which is
the likelihood of two intensity observations correspond-
ing to the same scene radiance. It requires a few images
of a static scene taken from the same viewing position
with fixed camera parameters. We took a few images of
a macbeth color chart for collected cameras to estimate
the response function.
b ) Intensity Normalization

When taking the images of a white board, according
to different wavelength of the light spectrum, the cam-
era parameters (n in Equation (15)) are changed. In or-
der to calculate the spectral sensitivity using Equation
(16), the image intensity have to be normalized. The
normalization factor n in Equation (15) is expressed as:

n =
ISO · t

F 2
(17)

where ISO is the value of electronic amplification, t

stands for the exposure time, and F means the f number
of each image.
c ) Spectrum Measurement

The spectrum data of the white board are measured
by a spectrometer, Photo Research PR-655.
d ) Estimated Spectral Sensitivity

We collected a few cameras, and estimated the spec-
tral sensitivity by using Equation (16). We also ob-
tained several results of spectral sensitivity from the
literature. All the spectral sensitivity are added into a
database, then we apply the singular value decomposi-
tion (SVD) method for the database to extract the basis
functions. The spectral sensitivity of SONY DXC 9000,
Nikon D70 and Canon 10D are shown in Figs. 7 and 8.

The spectral sensitivity of SONY DXC 9000 is ob-
tained by ourselves, and the estimated spectral sensi-
tivity is used as the ground truth for the evaluation
experiment.



Fig. 7 Spectral sensitivity of SONY DXC 9000.

Tbl. 1 Percentage of Each EigenValue

EigenValues Percentage

5.574994 76.3%

0.788019 10.8%

0.428096 5.9%

0.261325 3.6%

0.137284 1.9%

0.115380 1.6%

The spectral sensitivity of Nikon D70 and Canon 10D
are collected from the literature.
e ) Result

From the database of spectral sensitivity, we com-
pute the eigenvalues by SVD. The result of red channel
is shown in Table 1.

From this table we see that for the first four eigen-
values the sum of their percentage is 97%. This means
that we can take the corresponding eigenvectors to cover
97% information of spectral sensitivity.

Based on the analysis of eigenvalues, the number of
basis functions can be decided. Then we obtain basis
functions by extracting the eigenvectors of the spectral
sensitivity database. The result is shown in Fig. 9.

These Figs. 9, 10 and 11 show the R, G and B channel
of estimated basis functions by SVD from the spectral
sensitivity database respectively. Not all the basis func-

Fig. 8 Spectral sensitivity of Nikon D70 and Canon 10D.

Fig. 9 Extracted basis function of red channel from SVD.

Fig. 10 Extracted basis function of green channel from

SVD.

Fig. 11 Extracted basis function of blue channel from SVD.

tions are shown here.

4. 2 Evaluation of Optimum Basis Func-
tions

As shown in Equation (11), the coefficient matrix
is calculated from image intensity and spectrum data.
Then we estimate the spectral sensitivity by multiply-
ing the coefficient by corresponding basis functions. In
order to evaluate the optimum basis functions which
has least error, we did the experiment with four differ-
ent kinds of basis functions. The result of these basis
functions are shown in Figs. 12, 13, 14 and 15.



Fig. 12 Spectral sensitivity estimated from polynomial ba-

sis functions.

Fig. 13 Spectral sensitivity estimated from fourier basis

functions.

Fig. 14 Spectral sensitivity estimated from radial basis

functions.
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Fig. 15 Spectral sensitivity estimated from singular value

decomposition.

From these results, we see that the estimated spec-
tral sensitivity of the radial basis functions is the best,
and that of polynomial bases is the worst, as expected.
The extracted basis functions by singular value decom-
position may not be sufficiently accurate for estimat-
ing the spectral sensitivity. This should be because the
small number of spectral sensitivities obtained in the
database. Another reason should be that the images
used for estimating spectral sensitivity had too much
noise.

5. Conclusion

In this paper, we have analyzed the characteristic of
spectral sensitivity. We obtained the spectral sensitivity
by estimating the collected cameras and from the liter-
ature. Then we added all these spectral sensitivity of
different digital cameras to a database and extracted the
eigenvectors by using the singular value decomposition.
We compared the extracted basis functions by (SVD)
with three other basis functions, polynomial basis and
fourier series and radial basis function (RBF) to get the
optimum basis function. Based on the experiment, we
found that the radial basis functions (RBF) are much
more suitable for estimating the basis functions.

For the future work, we will add more spectral sensi-
tivity of digital cameras to the database to obtain much
more accurate basis functions. And for the radial ba-
sis functions we will improve the algorithm to make it
automatically calculate the optimum parameters.
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