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Introduction Classification-Reconstruction learning Experiments
Most of existing machine learners are closed-set classifiers for Open-set Recognition (CROSR) Task: open-set classification
with N known classes + unknowns as another class

CROSR framework overview
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iIn deep nets — This enables hierarchical outlier detection

Better separation between knowns (0--9) and unknowns (others)
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via reconstruction = LadderNet + bottleneck » Code: https://nae-lab.org/~rei/research/crosr/ (under construction)
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