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Abstract

The surface of most natural objects is composed of
two or more layers whose optical properties jointly de-
termine the surface’s overall reflectance. Light transmis-
sion through these layers can be approximated by using the
Lambert-Beer (LB) model, which provides a good trade-off
between the accuracy and simplicity to handle layer decom-
position. Recently, a layer decomposition based on the LB-
based model is proposed. Assuming surfaces with two lay-
ers, it estimates the reflectance of top and bottom layers,
as well as the opacity of the top layer. The method intro-
duces the “spider model”, which is named after the color
distribution in the RGB space that resembles the shape of
spiders. In this paper, we intend to verify the accuracy of
the spider model and the optical model where it is based on
(i.e., the LB-based model). We verify the LB-based model
by comparing to the Kubelka-Munk (KM) model, which has
previously been shown to be reliably accurate. The bene-
fits of layer decomposition are easy to notice. First, many
computer vision algorithms assume a single layer, and tend
to fail when encountering multi-layered surfaces. Second,
knowing the optical properties of each layer can provide
further knowledge of the target objects.

1. Introduction
In computer vision, reflectance is conventionally as-

sumed to follow a single-layer reflection model, such as
the Lambertian model [16]. While this model can serve as
an approximation of reflection of a single-layered surface,
most objects in the real world, particularly natural ones,
have surfaces that consist of multiple layers. For such ob-
jects, single layer models often provide a poor representa-
tion of their reflectance characteristics.

In multi-layered surfaces, each layer may have different
optical parameter values. These values and the order of the
layers physically determine the reflectance of an object, and
therefore also the object’s appearance. For example, human
skin roughly consists of two layers, namely the dermis and
epidermis [1], which both contribute to the unique appear-
ance of skin. Other examples are plant leaves, biological
tissues, and oxidized metals (patinas), paintings, etc.

Decomposing such surfaces, which means extracting
each layer optical properties, can benefit computer vision
applications and other fields, such as archeology, biology,
medical image analysis, etc. Morimoto et al. [18] proposed
a novel method that can extract the optical properties of lay-
ered surfaces with two layers (i.e., top and bottom layers).
The method extracts the opacity of the top layer and the
reflection of both layers using the spider model. Given a
single input image containing one bottom layer and at least
one top layer, it fits the color distributions in the RGB space
using the spider model, and then estimates the optical pa-
rameters.

The spider model proposed in [18] is a nonlinear equa-
tion describing the correlation of the intensity values of lay-
ered surfaces in the RGB space. It is called spider model
since, when the intensity values of the mixtures of one bot-
tom layer and n different top layers are projected onto the
color space, then we will have n different curves intersect-
ing at one point, resembling the shape of a spider. As dis-
cussed in [18], the core of the spider model is the Lambert-
Beer (LB) based model.

However, to our best knowledge, there are no discus-
sion in the literature about the accuracy of the LB-based
model applied to layered surfaces and thus the spider model.
Therefore, in this paper, our goal is to verify the accuracy of
the two models. For verifying the LB-based model, we will
compare it with the Kubelka-Munk (KM) model, a two-flux



scattering model; while for the spider model, we will inves-
tigate the differences of its generated RGB values from the
color distributions of real data.

The fields of optics and color science have introduced
many models of multi-layered objects [5, 13]. These mod-
els are principally based on radiative transfer theory [6].
One highly detailed representation is the many-flux scat-
tering model presented by Mudgett et al. [19]. Since this
model has many parameters that make it difficult to apply,
a simpler two-flux approximation called the Kubelka-Munk
(KM) model [15] is practically more useful, particularly in
color science. Mudgett et al. [20] has theoretically verified
that the KM model works reliably (when the scattering co-
efficient is relatively higher than the absorption coefficient);
which is the main reason for us to use it as the standard for
the verification. Note that, while the KM model (which is
a two-flux model) is considerably simpler than multi-flux
models, in computer vision, the model is still considerably
complex, due to the highly nonlinear equation.

The KM model has been used to heighten the realism of
pigmented materials [11] and weathered objects [10]. It has
been frequently used in color matching of textiles, paints,
printing inks and plastics (e.g., [9, 4]). Tsumura et al. [22]
decomposed melanin and hemoglobin of human skin based
on the Lambert-Beer (LB) law [2] and later used the model
to generate skin colors under various values of melanin and
hemoglobin concentrations [23]. Some researchers have
employed the alpha matting equation for decomposing lay-
ered scenes (e.g., [7, 17]). Since alpha matting utilizes a
linear equation to model layer composition, it can be con-
sidered as physically consistent with the LB law [21]. How-
ever, most methods using the alpha matting equation as-
sume the opacity to be independent from the wavelengths,
which is different from the LB-based model [18]. In terms
of the mathematical equation, the LB-based model is iden-
tical to Koschmieder’s equation for radiance [14]; although
to our knowledge, the equation has never been applied to
layered surfaces.

Organization The rest of this paper is organized as fol-
lows. First, we review the layered surface decomposition
using the spider model in Section 2. In Section 3, we dis-
cuss the two reflection models: the LB-based model and
the KM model, and compare them in Section 4. In Section
5, we provide a discussion about the accuracy and effec-
tiveness of the LB-based model, followed by conclusions in
Section 6.

2. Layered Surface Decomposition
Morimoto et al. [18] propose a layered-surface decom-

position method using the spider model. The method as-
sumes two layers and estimates the following three optical
properties: bottom layer’s reflection, top layer’s reflection

Figure 1. A layered surface decomposition result of wall painting
assuming two layers. Top left: input image. Top right: the esti-
mated bottom layer. Bottom left: the estimated opacity. Bottom
right: the estimated top layer.

Figure 2. A simulation using the estimated opacity in Fig. 1. Top
left: the reduced opacity image. Top right: the simulated appear-
ance with reduced opacity. Bottom left: the enhanced opacity im-
age. Bottom right: the simulated appearance with enhanced opac-
ity.

and top layer’s opacity. An example of their decomposition
is shown in Fig. 1, where an ancient wall painting is decom-
posed into its top and bottom layers, and its opacity. The
estimated top layer reveals the painting of the ship, which is
faded and harder to see in the original input image.

There are two applications of the layered-surface decom-
position. First, the estimated top layer is useful in color seg-



Figure 3. Spider model: Top row. Right: the generated image us-
ing LB-based model. Left: we plotted three colors with various
opacity values into the RGB space. The gray circle represents the
bottom layer’s reflection. Black circles represent the top layer’s
reflection when the opacity=1. Each of the line follows the spi-
der model in Eqs. (1) and (2). Bottom row. Left: the real image.
Right: the plot of the left image into the RGB space. The gray cir-
cle represents the bottom layer’s reflection. Black circles represent
the top layer’s reflection with the largest opacity value.

mentation which normally suffers from color gradations of
top layers. Second, the three estimated properties are use-
ful to simulate the synthetic appearance of a target object.
Fig. 2 shows the results of changing the opacity. By either
reducing or increasing the opacity, the image can fade out
or become more salient.

Spider Model The spider model, which is the core in
[18], is based on the Lambert-Beer law [2], and is math-
ematically described as follows:

Ir = Br + ψr(Ig −Bg)γr , (1)
Ib = Bb + ψb(Ig −Bg)γb , (2)

where Ic is the intensity of the input image (the mixed re-
flection of layered surfaces), c is the index of the RGB
color channels, Bc is the reflection of the bottom layer,
Fc is the reflection of the top layer, γr = µr/µg , ψr =
(Fr − Br)/(Fg − Bg)γr , ψb = (Fb − Bb)/(Fg − Bg)γb ,
and γb = µb/µg , where µc is the attenuation factor of the
Lambert-Beer law. Each of the variables is dependent on x,
the location of the pixel in the image.

The spider model is named after the shape of the plot
of the model in a three-dimensional space (the space is not
necessarily composed of the RGB color channels, but any
three wavelengths with considerable distance among them).
Due to the non-linear correlation between color channels

Figure 4. (a).The optical model of the Lambert-beer model.
(b).The optical model based on the Lambert-Beer model of lay-
ered surface objects

represented in Eqs. (1) and (2), the distribution forms a
curve as depicted in Fig. 3. When multiple lines are ob-
served, they resemble the shape of a spider. Each line starts
at the color of the top layer with the largest opacity. The
opacity decreases along with the line. The end point repre-
sents the bottom layer’s color where the opacity of the top
layer is equal to zero. By fitting the model to the observed
data, the optical parameters of the layered surface can be
obtained.

3. Reflection Models
3.1. Lambert-Beer based Model

Lambert-Beer Law [2] models the optical transmittance
of light passing through a transparent object:

T (λ) =
Io(λ)
Ii(λ)

= e−µ(λ)d, (3)

where T is the optical transmittance, λ is the wavelength, Io
is the intensity of the outgoing light, Ii is the intensity of the
incoming light, µ is the attenuation factor of the object, and
d is the distance of the light traveling through the object.
This law is illustrated in Fig. 4.a.

Based on the Lambert-Beer Law, the light reflected from
layered surfaces can be modeled as:

Ic(x) = Bc(x)e−µc(x)d(x) + Fc(x)
(
1− e−µc(x)d(x)

)
, (4)

where index c represents one of the three color channels
{r,g,b}. Ic is the mixture intensity of the transmitted light
from bottom and top layers. We call Ic a mixed layer.
Bc and Fc are, respectively, the bottom and top layer’s re-
flectance, when its thickness d is infinitely large. In this
paper, we define opacity φc = 1 − e−µcd. Finally, x is the
spatial image coordinate, which for the sake of simplicity,
we will omit throughout the paper. In the last equation, we
assume that the camera’s color sensitivities follow the Dirac
delta function. Although the model can be applied to spec-
tral data, in this paper we focus on RGB images taken from



an ordinary digital camera whose gamma correction is set
to off. Fig. 4.b illustrates the model.

Hence, if we have two-layered surfaces, they are com-
posed of the bottom layer Bc, the top layer Fc, and the
opacity of the top layer φ. In this paper, we assume that
the opacity of the bottom layer is infinitely large throughout
the input image, and also assume that the light coming on
the top layer is the same as that of the bottom layer. There-
fore, based on the assumptions, we can calculate the mixed
reflectance by canceling the incoming light intensity:

Rm = Rb

(
1− φ

)
+Rfφ, (5)

whereRm is the mixed reflectance, Rb is the bottom layer’s
reflectance, and Rf is the top layer’s reflectance.

3.2. Kubelka-Munk Model

In this section, we provide a brief review of the KM
model. For complete derivations and further details, read-
ers are referred to [13, 24, 12]. Assuming we have a surface
covered by a colorant as shown in Fig. 4.b, according to the
KM model we can describe the mixed reflectanceRm of the
surface as:

Rm =
1
Rf

(Rb −Rf )−Rf (Rb − 1
Rf

)e
Sd( 1

Rf
−Rf )

(Rb −Rf )− (Rb − 1
Rf

)e
Sd( 1

Rf
−Rf )

,

(6)

where Rb is the bottom layer’s reflectance, Rf is the re-
flectance of the top layer when its optical thickness (d) is
infinite, and S is the scattering coefficient of the foreground
layer. All of these parameters except for d are dependent on
wavelength. For most practical purposes, Sd can be treated
as a single quantity. Note thatRf andRb are conventionally
denoted asR∞ andRg , respectively; however, for clarity of
comparison to related models, we employ our own notation.

The KM model offers some degree of physical accuracy
in representing the reflectance of layered surfaces, but is for-
mulated based on certain conditions [15, 4]: the layers con-
tain colorants that scatter and absorb light (optically homo-
geneous objects are excluded); the layer is flat and infinite;
effects of polarization of light are ignored; the layer behaves
as if the pigment particles are large with respect to the wave-
length of light but very small compared to the thickness of
the layer; the layer does not generate light within it; and
each layer has uniform optical parameters. While theoreti-
cally these constraints should be fulfilled, in practice some
constraints can be broken without significantly undermin-
ing the accuracy of the estimation. For example, the layer
need not be infinite in area for this model to be useful.

Importantly, due to the straightforward computation, the
KM model is often used to estimate the mixed reflectance
(Rm) from given the values of the parameters (Rf , Rb, Sd).

However, to estimate the top layer reflectance (Rf ) and the
opacity (Sd) from given the values of the mixed reflectance
(Rm) and the bottom reflectance (Rb), the problem becomes
intractable.

4. Verification

Mudgett et al. [19] analyze the accuracy of the KM
model by comparing with a multi-flux scattering model,
which can be considered as a physically precise model of
layered scattering. For various absorption and scattering
values, they showed that the KM model is sufficiently cor-
rect for media whose scattering coefficient is larger than the
absorption coefficient. They concluded that forK/S < 0.1,
i.e., when scattering is more dominant than absorption, such
as in objects with high particle densities, the errors in the
KM model are negligible.

Theoretically, considering Eq.(6) and how it is derived,
besides the absorption, the KM model explicitly includes
two directions of scattering, namely, forward scattering and
backward scattering. While in Lambert-Beer law (Eq. (3)),
µ is the total attenuation, which represents only the absorp-
tion without explicitly involving any scattering [3]. Regard-
ing this difference, it might be concluded that any models
based on Lambert-Beer law will fail to be applied to any
scattering media.

However, the LB-based model in Eq.(4) is different from
the original Lambert-Beer law (Eq.(3)). In the right hand
side of the equation, there is an additional energy represent-
ing the top layer and the attenuation. With this additional
term, we intend to verify the model when it is specifically
applied to layered surfaces, by experimentally comparing it
with the KM model.

In this paper, in doing the comparisons, first, we calcu-
late the errors between real spectra and simulated spectra of
the models for verifying the accuracy of the reflection mod-
els (both the KM model and the LB-based model). Second,
we calculate the error of the fitting using the spider model.

4.1. Setup

To have accurate measurements, in our experiment we
used a spectrometer (Ocean optics’s USB2000+) to acquire
spectral data of an object attached to an integrating sphere
(LabSphere’s RSA-FO-150) and halogen light (Ocean op-
tics’s LS-1), which can provide the incident light intensity
and reduce noise from ambient lights. Fig. 5 shows our
experimental setup. As the target objects, we mainly used
various watercolors and powder mineral pigments, where
the latter were used in wall paintings in Japanese ancient
tumuli. Note that, watercolors previously have been shown
to follow the KM model [8]. Fig. 6 shows our target sub-
stances.



4.2. Procedure

In conducting the comparisons, we are guided the fol-
lowing procedure:

1. We obtain the mixed reflectance (Rm) by canceling the
incident light intensity.

2. We estimate the top layer reflectance (Rf ) by first cal-
culating the scattering and absorption coefficients (S
and K) from totally black and white bottom layers.
The calculation is done by using the following equa-
tions ([13, 12]):

S =
1
b

coth−1

(
b2 − (a−Rw)(a− 1)

b(1−Rw)

)
, (7)

where

a =
1
2

(
Rw −

Rz −Rw + 1
Rz

)
, (8)

b =
√
a2 − 1. (9)

Rw is the mixed reflectance of the top layer on a totally
white bottom layer, and Rz is the mixed reflectance of
the top layer on a totally black bottom layer. Having
obtained S and a, we can calculate the absorption co-
efficient by K = S(a − 1). Finally, Rf (the top layer
reflectance) is calculated by

Rf =

(
1 +

K

S
+

√
K2

S
+ 2

K

S

)−1

. (10)

Alternatively, Rf can also be measured directly from
the substance when the layer is very thick (so thick,
that the light cannot penetrate the bottom layer).

3. Having the values of Rb, Rf and S, we can generate
syntheticRm for any thickness d using the KM model.
In our experiments, we used a least square method to
obtain the appropriate thickness. The generated Rm is
then compared with the observedRm (obtained at Step
1), which is our ground truth.

4. Similarly, from the calculatedRf and observedRb, we
can generate synthetic Rm for any opacity φ using the
LB-based model. In our experiments, we used a least
square method to obtain the appropriate opacity. The
generatedRm is also compared with the observedRm.

4.3. Accuracy of the LB-based Model

We conducted the experiments using ten different water-
colors and two powder mineral pigments (Fig. 6). In one of
the experiments, we acquired the mixed spectral reflectance

Figure 5. (a) The schematic setup. (b) The real setup.

Figure 6. The target substances: watercolors and mineral pig-
ments. The two most bottom of the most right row are the mineral
pigments.

of the cobalt blue (the top most right color in Fig. 6), whose
spectral reflectance can be observed in Fig. 7.a. The lines
in the graph represent different thickness of the watercolor.
Fig. 7.b and c show the generated synthetic reflectance us-
ing the KM and the LB-based model, respectively. We cal-
culated the sum of the error for every wavelength. The syn-
thetic reflectance generated by the KM model produced a
total error of 0.3093, while the LB-based model produced
0.3938. This shows that in the case of the cobalt blue, the
LB-based model is sufficiently close to the KM model.

In one of the worst cases (the largest errors), the KM
model produced 0.8926, while the LB-based model pro-
duced 1.0704. This is the case of the vermilion (the top left
most color in Fig. 6). Fig. 8 shows the observed reflectance
and the generated ones. The reason for the large error in the
LB-based model is because the substance has a relatively
large scattering coefficient.

Overall, the errors of all the watercolors and mineral pig-
ments were measured, and shown in Fig. 9. As can be ob-
served in the figure, the error differences between the KM
model’s and the LB-based model’s generated reflectance are
relatively small.

4.4. Verification of the Spider Model

To verify the accuracy of the spider model, we followed
the following steps:



Figure 7. Experiment target: cobalt blue. Top left: the observed
spectra of the substance. The various lines represent the spectra at
different locations (thickness). The black dash line is the spectra of
Rf . Top right: the generated spectra using the KM model. Bottom
left: the generated spectra using the LB-based model. Bottom
right: The values of K/S.

Figure 8. Experiment target: vermilion. Top left: the observed
spectra of the substance. The various lines represent the spectra at
different locations (thickness). The black dash line is the spectra of
Rf . Top right: the generated spectra using the KM model. Bottom
left: the generated spectra using the LB-based model. Bottom
right: The values of K/S.

1. Using the procedure described in Section 4.2, we gen-
erated the synthetic mixed reflection using the KM
model and the LB-based model.

2. We chose three values of the spectral reflectance at
different wavelengths, representing the peaks of RGB
camera sensitivities (440nm, 552nm, 640nm).

3. We generated many mixed reflectance values by
changing the thickness.

Figure 9. The errors for the simulations of all experiment targets.

Figure 10. The blue lines represent the LB-based model, and the
purple lines represent the KM model. Different lines represent
different colors.

4. We projected the mixed reflectance values onto a 3D
space, representing the three wavelengths.

Fig. 10 shows the comparison of the lines in the 3D space
generated by the KM model and the LB-based model. As
can be seen, the generated shapes by the two models are, in
most cases, similar.

Aside from projecting the synthetic reflectance, we also
verified the distributions of the observed data and the fitting
result of the spider model. We expect that if the fitting result
is sufficiently close for various colors, then the spider model
is reliable in estimating the layered surfaces’ parameters.
Fig. 11 shows the fitting of all colorants, which represents
the success of fitting most of the color lines. Note that, in
the figures, there are some location discrepancies between
the lines generated by the two models (the yellow and red
lines) and the projected points of the pixel intensities (the
dark blue points). The reason of this is because, the pixel
intensities were acquired by using a digital camera, while
the lines were calculated from the spectrometer’s data.

5. Discussions
From the experimentation, we can conclude that:

1. We confirm the result of Mudgett et al. [20] that when



Figure 11. The fitting using spider model.The dark blue points are the projection from the input image taken by a digital camera. The blue
lines show the results of fitting by the spider model. The yellow lines show the simulation by the LB-based model. The red lines shows the
simulation by the KM model. The yellow and red lines are computed from spectrometer’s data.

scattering is more dominant than absorption, the KM
model works reliably accurate. This can be observed
particularly in Fig. 8.d. Namely, when K/S is con-
siderably small, the synthetic spectra in Fig. 8.b are
similar to the observed spectra in Fig. 8.a.

2. From Fig. 7 and Fig. 8, in most cases the LB-based
model can generate spectra that are similar to those of
the KM model. However, the result in Fig. 8.d shows
that the LB-based model can be inaccurate when K/S
is considerably small, namely when scattering is more
dominant than absorption.

3. Fig. 3.b shows that, in a three-dimensional space
(which can be the RGB space), the curves generated
by the KM and the LB-based models are similar. This
is further shown in Fig. 11, in comparison with the ob-
served data.

4. Fig. 11 shows that the spider model can reliably fit to
the observed layered surface data.

5. We confirmed generally the errors of the KM model
are less than LB-based model, as shown in Fig. 9.

6. Overall, importantly the errors of the LB-based model

are relatively small with respect to those of the KM
based model (Fig. 9). Therefore, the LB-based model
is comparable to the KM model, however its model is
much simpler.

Fig. 12 shows the decomposition result of a few col-
orants. The result of the estimated values of F for every
pixel is shown in Fig. 12.b, which represents the success
of the decomposition using the spider model. However, in
Fig. 12.b, there are some inaccuracy in the area between
color 5 and color 6. This is because their color lines are
considerably close (implying the inaccuracy was not caused
by the spider model).

6. Conclusion

In this paper, we have verified the LB-based model for
layered surfaces from the perspective of the Kubelka-Munk
(KM) model, both theoretically and empirically. Besides,
we also verified the accuracy of the spider model. We con-
sider our verifications can benefit the progress of layered-
surface analysis. Since, by being able to show the LB model
and spider model work appropriately for layered surfaces,
and to show the conditions where they work, we can have
considerable confidence in using the relatively simple mod-
els.



Figure 12. The result of layered surface decompostion. (a) Input
image.(b) top layer (c) bottom layer (d) opacity.
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