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We present a theoretical analysis of what we believe to be a new color constancy method that inputs two chro-
maticities of an identical surface taken under two blackbody illuminations. By using the Planck formula for
modeling spectra of outdoor illumination and by assuming that a narrowband camera sensitivity function is
sufficiently narrow, surface colors can be estimated mathematically. Experiments with simulation and real
data have been conducted to evaluate the effectiveness of the method. The results showed that although this
method is a perfect vehicle for simulation data, it produces significant errors with real data. A thorough in-
vestigation of the cause of errors indicates how important the assumptions on both blackbody illuminations
and narrowband camera sensitivities are to the method. Finally, we discuss the robustness of our method and
the limitation of solving color constancy using the illumination constraint. © 2007 Optical Society of America

OCIS codes: 150.0150, 150.2950.

1. INTRODUCTION

Acquiring an object’s inherent color is important when
modeling a real-world object. Since color appearance is
significantly influenced by the illumination color, a
method to remove the latter and to estimate the actual
color of the object’s surface, its “color constancy” in com-
puter vision, is required. (“Color constancy” often implies
recovering an object’s actual surface color in the field of
computer vision. Note that, to be precise, it is a psycho-
logical term meaning the ability to perceive a color as con-
stant under varying illumination.) In general, surface-
color estimation is achieved by capturing the object’s color
under a known illuminant and dividing it by the illumi-
nation color. We cannot, however, apply this method when
the target objects are huge and are located outdoors, be-
cause the illumination condition is neither controllable
nor known. It would be of great benefit to achieve color
constancy only from colors received by sensors.

A number of color constancy methods have been pro-
posed by researchers [1-13]. We can categorize them into
two groups: dichromatic-based methods and diffuse-based
methods. Dichromatic-based methods [1-7] require the
presence of highlighting, while diffuse-based methods
[8-13] require only body reflection. Since our primary ob-
jects are outdoor objects, and they have mainly body-
reflection components, this paper focuses on diffuse-based
methods.

Most diffuse-based methods use a single input image of
objects lit by a uniformly colored illumination. Usually
these methods require strong constraints in the surface-
color domain, such as a prior surface-color database, and
cannot accurately handle images with few surface colors
[11]. Alternatively, methods based on a varying illumina-
tion color were introduced by a few researchers [14-17].
They found that the change of illumination can be a key
to solving the color constancy problem. D’Zmura [14] pro-
posed a method using approximated linear basis func-
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tions to form a closed-form equation. One drawback of the
method is that it fails to provide robust estimations for
real images. Ohta et al. [15] stabilized the estimation
based on D’Zmura’s assumption and the CIE daylight con-
straint. Finlayson et al. [16] used a single surface color il-
luminated by two different illumination colors and per-
formed the estimation by assuming that the illumination
colors form a line in an inverse-chromaticity space. Al-
though the method is simple and elegant, the estimation
tends to be unstable because of noise and outliers. Bar-
nard et al. [17] utilized the Retinex algorithm [18] to au-
tomatically obtain a surface color with different illumina-
tion colors and then applied the method of Finlayson et al.
[16] to estimate varying illumination colors in a scene.

This paper proposes a new method for color constancy
that inputs two colors taken under different illumination
and estimates each illumination color numerically by re-
garding the blackbody radiation as the illumination spec-
tra. Blackbody radiation accurately models the light from
heated metals. Moreover, several researchers reported
that it can predict the general shape of daylight illumina-
tions [6,19]. Therefore, blackbody radiation can be a bet-
ter illumination model than the straight-line model used
in the previous methods [16,17]. In addition to the black-
body illumination assumption, our method assumes that
the sensitivity of narrowband camera sensors is suffi-
ciently narrow [16,17,20]. The method uses three sensor
values at each wavelength. This is because it was de-
signed to use image values. However, any wavelength can
be chosen for the algorithm, which means that the algo-
rithm can be applied to a spectral separation method
without any loss of generality.

The rest of the paper is organized as follows: In Section
2, we describe a problem definition of color constancy and
a mathematical expression of illumination colors using
blackbody radiation. In Section 3, we describe the method
to estimate illumination colors. We provide simulations,
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experiments, and results in Section 4. Since the results
with real data included significant errors, we explore the
cause of those errors with additional experiments. In Sec-
tion 5, we discuss the robustness of our method, compare
the blackbody model with other illumination models, and
discuss the limitation of solving color constancy using il-
lumination constraint. Finally, in Section 6, we conclude
our paper.

2. THEORETICAL BACKGROUND

A. Color Constancy

Colors perceived by humans or camera sensors are light
intensities that are emitted from a light source, reflected
by an object surface, and filtered by color sensors. Color
constancy is an inverse process of these; i.e., we estimate
surface and illumination properties from a filtered color.
This paper defines color constancy as the separation of an
image’s chromaticity i, into surface and illumination chro-
maticities s, and e., using the following equation:

ic =8, C= {r’g}‘ (1)

Chromaticity is defined as a ratio of the R and G values to
the B value:

ir=IR/IB’ igzIG'/IB' (2)

Equation (1) holds by using this definition. We use the no-
tation r,g for chromaticities and R,G,B for intensities to
distinguish them simply.

Equation (1) is derived by assuming a narrowband
camera model and converting intensities into chromatici-
ties defined by Eq. (2). Details are as follows: Image in-
tensities of diffuse objects taken by a digital color camera
can be described as Eq. (3):

Ic=TJ SMEMNg.MNd, c={R.G.B},  (3)
Q

2TSCEC? (Sc =S()\c)’Ec =E(}\c))’ (4)

where S(\) is the surface spectral reflectance; E(\) is the
illumination spectral power distribution; and ¢.(\) is the
color sensor sensitivity, where index ¢ stands for the type
of sensors (R,G, and B). The integration is done over the
visible spectrum (), and 7 is the gain determined by the
aperture, the integration time, and the electronic amplifi-
cation.

Next we introduce a narrowband camera model, which
assumes that each color sensor has all its sensitivity con-
centrated on a single wavelength \.. That is, each sensi-
tivity is approximated by a Dirac delta function &(.) whose
center wavelength is \.. Therefore, g.(\)=8\-X\.), and
we can subsequently obtain Eq. (4). Here \p,\g,\p are
the wavelengths on which the sensitivities are concen-
trated.

Color constancy focuses on recovering chromaticities
instead of intensities. This is because there is a scale am-
biguity between the surface spectral reflectance and the
illumination spectral power distribution. We cannot dis-
tinguish a dark surface with bright illumination from a
bright surface with dark illumination. Therefore, we con-
vert the intensity space to the chromaticity space by sub-

Vol. 24, No. 7/July 2007/J. Opt. Soc. Am. A 1887

stituting Eq. (4) into Eq. (2). Thus, we obtain Eq. (1). The
surface chromaticity [Sg/Sp,Sqg/Sgl’ is rewritten as
[sr,sg]t, and the same is true for the illumination chroma-
ticity.

B. Illumination Chromaticity
This paper assumes that most illumination spectra can be
approximated by blackbody radiation. Blackbody radia-
tion models not only the spectrum of sunlight, or of light
emitted from metals heated to high temperatures, but
also that of common daylight, as several researchers have
reported [6,19]. The assumption is useful since an illumi-
nation chromaticity, which is a two-dimensional vector,
becomes a function of a single scalar, temperature 7. The
scalar T is often called color temperature for representing
color.

Using the blackbody assumption, an illumination chro-
maticity can be expressed as

M(}\R,ﬂ M()\GvT)
e T) = ———

2 e =—’
M()\B,D . M(xBaﬂ

where é= [e,(T),eg(T)]’ is the illumination chromaticity;
M(\«,T) is the spectral power of the blackbody radiation;
T is temperature in kelvin; and \g,\g,\p are the center
wavelengths of the camera sensitivity. The narrowband
assumption and the chromaticity definition of Eq. (2) are
used to derive the last equation.

From the Planck formula, M(\,T) is

M(\,T) = e\ [exp(co/NT) - 117, (6)

(5)

where c; is 3.7418 X 10716 (in Wm?), ¢, is 1.4388 X 102 (in
mK), and A is the wavelength (in m). Substituting Eq. (6)
into Eq. (5), we obtain

RO P ()
e, - r(DR(T,) r— )\153 ’
. Pp(T) \p
eg(T ) = kg(bg(—T') kg = E 5 (8)

where T =co/T and ®«(T") are defined as follows for sim-
plicity:

Op(T") =exp(T'/Ag) - 1,
Go(T") =exp(T'/\g) - 1,

Dp(T") = exp(T'/\g) - 1. (9)

3. OUR APPROACH

A. Problem Statement

The difference between our approach and conventional
approaches is that we use the exact blackbody radiation
for the model of illumination colors. Consequently, the
color constancy problem becomes equivalent to estimating
a color temperature 7. Equation (1) shows the interde-
pendency between surface and illumination chromatici-
ties. Also, illumination chromaticity can be parameterized
by the color temperature T, as Eqgs. (7) and (8) show.
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Fig. 1. (Color online) Problem statement. We estimate color
temperatures from image chromaticities taken under two black-
body illuminations.

Thus, when the color temperature T is known, the illumi-
nation chromaticity and then the surface chromaticity
can be calculated explicitly.

The equations to solve can be established as follows:
When we observe a surface chromaticity § under two
blackbody illuminations é(T';) and é(T,), we can estimate
each color temperature T'; and Ty from obtained colors i}
and i;. Figure 1 illustrates those notations. Let the two
image chromaticities be i»1=[ir1,ig1]t and i;:[ir2,ig2]t. We
can derive the following equations, since the image chro-
maticities divided by their illumination chromaticities are
identical to the surface chromaticity:

0,(T1, Ty) = i1 Pr(T)Pp(Ty) - iroPr(T)Pp(Ty) = 0,
(10)

0,4(T1,Tg) = i1 P(T1)Pp(T) — 1g2P(Ty) Pp(T7) = 0.
(11)

Color constancy will be solved if T and T, are specified
from those equations.

Detailed derivations of Eqs. (10) and (11) are as follows:
The image chromaticities divided by their illumination
chromaticities are identical to the surface chromaticity, as
Eq. (1) shows. Therefore, the following equations can be
derived:

irl/erl - irZ/erZ = 0’ (12)

igl/egl—igz/eg2=0, (13)
while Egs. (7) and (8) can be converted as follows:

/e, = Op(T" )k, Dp(T"), (14)

Ve, = Dg(T" )k, Pp(T'). (15)

By substituting Eqs. (14) and (15) into Eqgs. (12) and (13),
Eqgs. (10) and (11) are obtained.

B. Solutions

Equations (10) and (11) are difficult to solve by minimiz-
ing the square sum of Egs. (10) and (11). This is due to the
exponential character of the functions in those equations.
Hence, we propose a stable method using bracketing [21].
The overview of the algorithm is as follows:

1. First, we select the initial values of T; and Tj. We
denote them as ¢ and t;, respectively.

2. Assuming that ¢; is correct, we solve Eqgs. (10) and
(11) independently, using bracketing. Let the solutions be
ty, and ¢y,
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3. If t;, and ¢y, are sufficiently similar to each other, we
output ¢; and (t§r+tég)/2.

4. Otherwise, we modify ¢{ so that the difference be-
tween ¢, and ¢;, decreases. Again, ¢; can be found using
bracketing.

5. Go back to step 2.

In order to realize the above algorithm, we must clarify
the following two points:

e How to solve Egs. (10) and (11).

e How to determine the value of ¢ that decreases the
difference between ¢, and t;,, using the bracketing tech-
nique.

1. Bracketing for Step 2
The following shows how to solve Eq. (10). The same ar-
gument can be applied to Eq. (11). Given an arbitrary 77,
Eq. (10) has a unique solution of T on 7'3>0 (under the
condition described below.) The solutions can be calcu-
lated by bracketing. The initial brackets are automati-
cally determined. They are derived from the shape of the
evaluation function 0,, which is illustrated in Fig. 2. As
the figure shows, 0, is convex downward and has only one
local minimum. It starts from zero and gradually ap-
proaches infinity. Therefore, a solution of T, always exists
and can be calculated by bracketing. We can randomly se-
lect one side of the initial brackets and find the other side
by going up or down the slope until the sign of 0, changes.
The shape of ®: and the conditions for which those
equations have solutions are derived from the following
propositions:

1. If T is positive, the function ©- is convex downward.

2. That ©«(T7,0) is zero for any T1.

3. If T} is positive, limTéHmG)*(Ti,Téh +00,

4. If T} is positive, ©,=0 has solutions on T3>0 if and
only if

L2 ®p(T)/Ng = i1 PR(T/Np > 0. (16)
Similarly, ®,=0 has solutions on T5>0 if and only if

Igo®p(TD/NG = ig1P(T)/Np > 0.

v

Initial brackets

1
thy

Fig. 2. Shape of the evaluation function 0,, given an arbitrary
T}. A solution of Ty always exists and can be calculated by brack-
eting. We let the initial value of ¢, be one side of the brackets and
find the other side by going up or down the slope until the sign of
0, changes.



Kawakami et al.

Brief proofs of the above propositions are as follows.

Proof of Proposition 1. We show that the second deriva-
tive of 0, is positive at the extremum D. We used 0, for
the proof, but the same argument can be done by using
0,. We differentiate 0, by Ty:

r

irl irZ
=—Op(T))exp(Ty/\g) — — exp(To/\g)P5(T7).
aTy g r(T)exp(To/Np) r p(To/\g)Pp(TY)

From the last equation, T, which gives the extremum,
can be calculated as

T Nk 1 i T) | -1 i T
! = Zou(T) | -log| —DR(T) ] ).
2 e — g 0og n 5(T1) 0og g r(T7)

17

According to the Eq. (17), O, has a unique extremum.
From the continuity of ©, as well as §0,/JT5,0, is convex
upward or convex downward. We further differentiate O,
by T:

I

+0, 1 1\iy p— : i
= — - = | dR(T)exp(TYNg) + —— .
I \Np Ag)ng RVEPERRBITC

Since d0,/dTy is zero at the extremum,

+ 0, 1 1\iy
=| — - — | —Pr(T)exp(Ty/\p).

T2 \Ag  Ag/\p
The last equation is positive because A\g <A\g. Thus, 0, is
convex downward. |
Proposition 2. Trivial. [ |
Proposition 3. Trivial. |

Proof of Proposition 4. We prove only the former part,
but the latter can be proved similarly. From Proposition 1,
0, is convex downward. That is, the equation possibly has
two solutions at most. One of those solutions is zero be-
cause of Proposition 2. Consequently, a solution on T
>0 exists if the local minimum of @, exists on T%>0.
Such a condition can be written as Eq. (16) from Eq. (17).
A solution on T',>0 certainly exists from Proposition 3.0

2. Bracketing for Step 4

Let us show how to determine a ¢] that decreases the dif-
ference between ¢5,. and t5,. If ¢; increases/decreases, ¢,
—t,, increases/decreases around the true solution as illus-
trated in Fig. 3. Therefore, again we can calculate the so-
lutions by bracketing. The facts are derived from the fol-
lowing proposition:

T Ty,

Initial brackets

Fig. 3. Shape of Tj.-Tj, around the true solution. If T
increases/decreases, Ty, — Ty, increases/decreases. Therefore, the
solution can be calculated by bracketing.
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5. Let the true solutions be 7" and 7% for Eqgs. (10) and
(11). If T} increases/decreases around them, T3 -Tj,

increases/decreases as long as T1>Té

To automatically determine the initial brackets, we
need to clarify the shape of the function where it crosses
the zero point. The Taylor expansion of Egs. (10) and (11)
is used for this purpose. A detailed derivation of Proposi-
tion 5 is as follows:

Derivation of Proposition 5. We derive the Taylor series
of ®, about a point (¢1,¢5,),

idp(tl) (8]
0,= ®r(ti’tér) +| ——— exp| —
Ap AR

ir2q)R(tér) ti A irl(I)R(ti) tér
-——exp| — +| ——exp| —
\p P\ \a ! \p P\ \a

ir2q)B(ti) tér ,
- €xXp )\_ AtZr;

AR R

where At]=T1-t],At; =Ty —t;. We can simplify the last
equation using Eq. (10),

0, =i, Pr(t1)Pp(ts,) (H, (¢1) Aty — H,(t5,)At5,),  (18)
where

exp(t/\g) exp(t/\g)
T DR NpPp(E)

r

In a similar way, we derive the Taylor series of ®, about
another point (¢1,25,):

0, =i Pg(t1)Pp(ts,) (Hy(t1)At] — H,(t5,)At5,).  (19)

From the last two equations, T, T, against A¢; can be
expressed as

B /GG
BTN\ HAty,)  Hyty,)

)Ati + (£, — t5,)-
Around the true solutions 79,77, the last equation be-
comes

H(T}) HAT)

Ty, - Th, = At} (20)

H(Ty) Hy(Ty)
The following function
I(T1,T3) = H(T)H4(T3) - Hy(T1)H,(T5) (21)

is obviously I(T,T)=-I1(T5,T7). We confirmed that
I(T1,Ty) is positive if T] is larger than T} by calculating
every case from 2000 to 10,000 K with a 1 K interval.

4. EXPERIMENTS AND RESULTS

A. Evaluating Effectiveness Using Simulation Data

The effectiveness of the proposed method is evaluated

with simulation data. In particular, we checked the fol-

lowing two points: (1) average estimation error using

simulation data and (2) dependency on initial values.
The error was defined as the difference between esti-

mated and true reciprocal color temperatures. Reciprocal
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color temperatures were proposed by Judd [22], in which
differences correspond more closely to equal perceptual
color differences than to normal color temperatures. The
unit is called “mired” (=106 K1) and is defined as 7"¢¢
=108/T. Empirically, the just noticeably different (JND)
chromaticity difference is 5.5 mired [11,22]. The range
from 2500 to 8500 K in color temperatures corresponds to
the range from 400 to 118 mired in reciprocal color tem-
peratures.

1. Estimation Error with Simulation Data

Methods. We calculated the average estimation error
using seven kinds of blackbody illuminants and six kinds
of reflectance. The total combination was ;C, X 6=126. A
camera sensitivity, which is 1 at a particular wavelength
(red, 624 nm; green, 548 nm; blue, 480 nm) and is 0 at oth-
ers was used. The seven color temperatures were 2500 K,
3500 K, 4500 K, 5500 K, 6500 K, 7500 K, and 10,000 K.
The six reflectance patches were “Red,” “Blue,” “Green,”
“Cyan,” “Magenta,” and “Yellow” in the GretagMacbeth
ColorChecker, hereafter referred to as “Macbeth.” All the
reflectance data were obtained by measuring the spec-
trum of a color patch with a spectrometer (Photo Research
PR-650) under a known illuminant.

Results. The average estimation error was 1.64 X 1075
mired for Ty and 1.74 X 1075 mired for Ty, as shown in
Table 1. The estimation by the previous method [16] is
also shown for reference. The error converges to zero in
all cases by using the proposed method.

2. Dependency on Initial Values

Methods. We did our estimation 500 times with differ-
ent initial values but with the same reflectance and illu-
minants and calculated the average and the standard de-
viation of the estimation error. A camera sensitivity that
is 1 at the wavelength (red, 624 nm; green, 548 nm; blue,
480 nm) and is 0 at others was used. The color tempera-
tures of illuminants were 3500 and 7500 K. We used “red”
reflectance of the Macbeth ColorChecker. Initial values
were randomly and uniformly distributed over the range
of the true temperature +1000 K.

Results. The averages and the standard deviations of
the estimation error were 3.53x107% mired and 2.18
X 107% mired for T4, and 3.78x107% mired and 2.35
%X 107 mired for T, as shown in Table 2. The standard
deviation is nearly the estimation accuracy, which is
about 107® due to the machine accuracy. Therefore, we
conclude that initial values do not affect the estimation.
However, the result temperatures can be an impractical
number, such as 2X 102K if the relation (for instance,
T1>Ts) is reversed in the initial values (T'; <T5). In other

Table 1. Average Estimation Error in
126 Experiments Using Simulation Data”

T, Error T, Error
Method (mired) (mired)
Proposed method 1.64x107° 1.74x 1075
Previous method 5.11x10 5.52x 10

“The estimation error by the previous method [16] is also shown for reference.

Kawakami et al.

Table 2. Average and Standard Deviation of
Estimation Errors in 500 Experiments
with Different Initial Values

T, Error T, Error
Parameter (mired) (mired)
Average 3.53%x107° 3.78%x10°6
Standard deviation 2.18x107° 2.35x 1076

words, initial values can be any numbers if the relation
between T'; and T is retained.

B. Applying the Algorithm to Real Data

We conducted four sets of experiments to see whether the
method could work on real data. In the first set of experi-
ments, we tested our algorithm with various kinds of
natural illuminants and reflectances, and erroneous re-
sults were obtained. Therefore, we presumed there are
two causes of the error. One cause might have been the
failure of the blackbody radiation to accurately portray
the actual illuminants. To understand this problem, we
conducted the second set of experiments and observed
how the violation of the blackbody assumption affects the
estimation. We also tested how different real spectra ap-
pear to blackbody radiations in the third set of experi-
ments. The other cause of error must have been the vio-
lation of the narrowband sensitivity assumption. We
tested how it affects the estimation in the fourth set of ex-
periments.

The following explains experiments that were con-
ducted, and each focuses on: (1) estimation error on ex-
periments with real data, (2) error caused by the assump-
tion of blackbody illumination, (3) difference between
spectra of the blackbody radiation and real spectra, and
(4) error caused by the assumption of narrowband sensi-
tivity.

1. Estimation Error with Real Data

Methods. We calculated the average estimation error
using eight kinds of natural illuminants and six kinds of
reflectance. The total combination was gCy X 6=168. The
sensitivity of bandpass filters (MellesGriot 03FIV119,
03FIV111, 03FIV004) was used for the camera sensitivity.
Their full width at half-maximum was 10 nm, and their
center wavelengths were as follows: red, 620 nm; green,
532 nm; and blue, 450 nm. They are shown as “Filter” in
Fig. 4. Eight illuminants were A, B, C of CIE standard il-
luminants and Judd daylight phases D48, D55, D65, D75,
and D100 [19]. The six reflectances were “Red,” “Blue,”
“Green,” “Cyan,” “Magenta,” and “Yellow” of Macbeth.

Results. The average estimation error was 3.67 X103
mired for Ty, and 1.17 X 10* mired for T, as shown in
Table 3. The erroneous results force us to think what the
substantial causes of those errors are. As stated in the be-
ginning of this subsection, there are two possible causes:
the violations of the blackbody assumption and the nar-
rowband sensitivity assumption. The following experi-
ments investigated how the violations affect the estima-
tion. We discuss the robustness of the method in Section
5.
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Fig. 4. (Color online) Camera sensitivities used in the first ex-

periments in Subsection 4.B. They are the sensitivities of band-
pass filters (MellesGriot 03FIV119, 03FIV111, 03FIV004).

Table 3. Average Estimation Error in
168 Experiments Using Real Data®

T, Error T, Error
Method (mired) (mired)
Proposed method 3.67x10% 1.17x 10*
Previous method 7.97x10 8.43X 10

“The estimation error by the previous method [16] is also shown for reference.

2. Error Caused by the Blackbody Assumption

Methods. We plotted the change of the estimation error
against the error on illumination chromaticity. Let Ae,
and Ae, be the error on illumination chromaticity. One il-
lumination chromaticity was chosen, and Ae, and Ae
were added to it. Ae, and Ae, were changed from 0 to 1%
by 0.1%. Camera sensitivity is 1 at these wavelengths
(red, 624 nm; green, 548 nm; blue, 480 nm) and is 0 at oth-
ers. The color temperatures were 3000 and 9000 K. The
reflectance was “dark skin,” i.e., the top-left brown reflec-
tance of the Macbeth ColorChecker.

Results. The AT1 and AT2 in Fig. 5 show the estima-
tion error AT; and AT2 against the percentage of the
modeling error Ae, and Ae, of illumination colors. The
unit of the horizontal axis is percent, and that of the ver-
tical axis is mired. Figure 5 also shows the line of JND
chromaticity difference (5.5 mired). The figure shows that
the modeling error should be under about 0.1% if we want
the estimation error to be lower than 5.5 mired.

3. Difference between Blackbody and Real Spectra

Methods. We calculated the difference between black-
body illuminants and real illuminants. First, we searched
for the blackbody color temperature whose color is the
nearest to that of the real illuminant. Then we calculated
the color difference between the two. The value that rep-
resents the difference is defined as (chromaticity of the
real illuminant — chromaticity of the searched color
temperature)/(chromaticity of the searched color tempera-
ture). Spectra of the CIE standard illuminants (A,B,C)
and Judd’s daylight phases (D48, D55, D65, D75, D100)
were used for the calculation. A sensitivity that is 1 at
620 nm (red), 532 nm (green), 450 nm (blue) and 0 at oth-
ers was used.

Results. Table 4 shows the difference between the color
of blackbody and real spectra, Except for CIE standard il-
lumination A, all illumination has more than a 0.1% dif-
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ference. Therefore, the proposed method would produce
significant errors when those illuminants were used.

4. Error Caused by the Narrowband Assumption

Method. We made a virtual sensitivity with variable
bandwidth by using the Gaussian function. The o of the
Gaussian function was the parameter to change the band-
width. The center wavelengths were as follows: red,
620 nm; green, 532 nm; and blue, 450 nm. Two examples
of those sensitivities are shown in Fig. 6. One with o

500 r

400
- ATH1

= AT2
300 — 5.5[mired]

200

Estimation error [mired]

100

0

0 0.2 0.4 0.6 0.8 1
Error (violation of the blackbody assumption)  rate [%]
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Fig. 5. (Color online) Plots of the estimation error against the
violation of the blackbody assumption; “AT1” and “AT2” express
the estimation error. JND chromaticity difference (5.5 mired) is
also shown. To limit the estimation error to lower than 5.5 mired,
the violation should be under about 0.1%.

Table 4. Difference between Blackbody
and Real Spectra®

Ae, Ae, Nearest T'

Illuminants (%) (%) (K)

CIE A 0.0029 -0.0165 2856
CIE B 2.6368 -4.6126 5087
CIE C 5.5397 -6.1154 7451
Judd D48 -1.0788 2.0506 4818
Judd D55 -1.0617 1.6286 5584
Judd D65 -0.9358 1.1519 6698
Judd D75 -0.7690 0.8096 7842
Judd D100 -0.4606 0.3816 10852

“We searched for the blackbody that has the color nearest to that of the real spec-
trum and calculated the chromaticity difference between the two. Note that the dif-
ference is defined in the color space of the sensitivity used in this experiment.



1892 J. Opt. Soc. Am. A/Vol. 24, No. 7/July 2007

9 -
8
7
2
56
-2 5
o 4
»n
3
2
1
P
U
400 450 500 550 600 650 700
Wavelength [nm]
(@)
06 1
A‘N‘A
A A
@ 05 i A AA
€ o4l ¥
% ’ P A —+—dark skin
203 | x light skin
[0) A
o 02 | AAA‘ 5 4 green
A““ A“n
R — W
0.0 . ) . .

400 450 500 550 600 650 700
Wavelength [nm]
(b)

Fig. 6. (Color online) Data used in the fourth experiments in
Subsection 4.B. (a) Virtual camera sensitivities. Here “5” and
“20” are Gaussian functions whose standard deviation is 5 and
20 nm, respectively. (b) Reflectances. Three reflectances are “dark
skin,” “light skin,” and “Green” of the Macbeth ColorChecker.
“Dark skin” varies linearly around wavelengths of a camera sen-
sitivity compared with “green” and “light skin.”
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Fig. 7. (Color online) Plot of the estimation error against the
violation of the narrowband sensitivity assumption. The more
the bandwidth of a camera sensitivity (the standard deviation o
of a Gaussian function) grows, the larger the estimation error be-
comes. Three reflectances, “dark skin,” “light skin,” and “green”
were tested. The speed of the error growth depends on the
reflectance.

=5nm is shown as “5,” and 0=20 nm is shown as “20.”
Color temperatures of illuminants were 4000K and
9000 K. We used “dark skin,” “light skin,” and “Green” of
Macbeth for the reflectance. Figure 6 shows them denoted
by “dark skin,” “light skin,” and “green,” respectively.
Results. Figure 7 shows the estimation error against
the bandwidth of a camera’s sensitivity. The more the

Kawakami et al.

bandwidth (the standard deviation o of a Gaussian func-
tion) grows, the larger the estimation error becomes. The
speed of the error growth depends on the reflectance. In
the case of “green” or “light skin” reflectance, the estima-
tion breaks down when the o of the Gaussian function is
larger than 5 nm, while in the case of “dark skin,” the es-
timation performs well until the a becomes 20 nm. If a re-
flectance varies linearly around wavelengths of a cam-
era’s sensitivity, the integration in Eq. (3) becomes a
multiplication by a constant number. Then the modeling
error by the narrowband assumption can be ignored. Oth-
erwise, the modeling error affects the estimation. As Fig.
6 shows, the reflectance “dark skin” varies linearly
around wavelengths of a camera’s sensitivity compared
with “green” and “light skin.” When o is set to 5 nm, half
of the test data set provided good results within the error
of 5.5 mired.

5. DISCUSSION

Assuming illumination to be the blackbody radiation
made the estimation sensitive to the modeling error.
There are two other ways to express illumination by a
one-dimensional parameter. One is to use Wien’s approxi-
mation for blackbody radiation, and the other is to use the
straight-line approximation of Finalyson et al. The black-
body illumination model can be compared with those
models. Wien’s approximation to the Planck formula can
be expressed as

M(\,T) = ¢\ exp(eo/NT) L. (22)

From the last equation, we can derive the following rela-
tion [12,20]:

e, = meg, (23)
where é=[e,,e,]' is an illumination chromaticity, A
=(1/AR-1/\B)/(1/\G-1/\B) and m=\2/(N4\2A~5) are
constant numbers characterizing a camera. If we substi-
tute the equation into Egs. (12) and (13), we obtain two
redundant equations and cannot determine the solutions
for each color temperature. The Planck formula and
Wien’s approximation are very similar when the color
temperature is low. Therefore, estimation of our method
would be unstable if the two color temperatures of input
illumination are both low.

Finlayson et al. assumed that natural daylight illumi-
nation falls on a line [16] in an inverse-chromaticity
space. Namely, they assumed the following relation:

1/e,=m(1/e,) +c. (24)

Note that the last equation does not appear in Ref. [16],
but it expresses its idea. Reference [16] assumes that a
set of all diagonal matrices mapping chromaticities under
arbitrary illumination (e,,e;) to canonical illumination
(eﬁammoal,e;am’mcal) appears linear in the 1st-2nd diagonal
matrix component space. In other words, it assumes f(x)
=m'x+c’, where x and f(x) correspond to the first and the
second diagonal matrix components eﬁanomcal/e, and
ecanonical, - regpectively. We can derive Eq. (24); since
both ecromical and ega“"“ical could be any constant numbers,
they can be replaced by (1, 1).
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Table 5. Difference between Real Illumination
Colors and Colors Calculated from the
Straight-Line Illumination Model

Ae,. Ae,
Illuminants (%) (%)
CIE A 6.9829 -7.2289
CIE B -1.9758 4.0070
CIE C -1.1578 2.7347
Judd D48 -0.6929 1.3720
Judd D55 -0.4382 0.9421
Judd D65 -0.0239 0.0553
Judd D75 0.3781 -0.9191
Judd D100 1.0385 -2.6985

If we substitute the last equation into Eqgs. (12) and
(13), we can solve all the unknown parameters explicitly.
(This paper was inspired by this discovery.) The gradient
m and the intercept ¢ in Eq. (24) are constant numbers
calculated by least-square fitting to the data of CIE stan-
dards and Judd’s daylight phases. The difference between
those illumination data points and the straight line is
shown in Table 5. Considering the results shown in Table
3, the previous method, the straight-line model of Finlay-
son et al., is the most successful, and we think that this is
the only model for solving color constancy with illumina-
tion constraint. However, as shown in Tables 3 and 5,
even the straight-line model cannot help suffering from
the effect of the modeling error.

Thus, the comparison of one-dimensional models of the
illumination shows that illumination color constraint can
work by itself as long as there is no modeling error. How-
ever, the modeling error cannot be ignored and must be
considered in order to perform stable and accurate color
constancy. We conclude that both illumination constraint
and other rich information, such as assumptions on re-
flectances, should be taken into account for a robust esti-
mation.

6. CONCLUSION

We proposed what we believe to be a new method to solve
the color constancy problem by exploiting blackbody ra-
diation. Based on the approach, we examined and ob-
tained the results in the following four areas: (1) Our
method performed considerably well in the experiments
with simulation data. (2) To achieve the accuracy within
the error of just noticeable differences (JND), the model-
ing error between the blackbody radiation and the illumi-
nants should be lower than 0.1%. (3) Although the method
uses initial values, the results do not depend on how to
choose them. (4) Most illuminants differ from the black-
body radiation by more than 0.1%. The discussion about
the robustness of our method and the possibility of solv-
ing color constancy using a one-dimensional model of the
illumination shows that much information, such as as-
sumptions about reflectances, should be taken into ac-
count with the constraint on illumination to achieve
stable and accurate color constancy.
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