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Color constancy from blackbody illumination
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We present a theoretical analysis of what we believe to be a new color constancy method that inputs two chro-
maticities of an identical surface taken under two blackbody illuminations. By using the Planck formula for
modeling spectra of outdoor illumination and by assuming that a narrowband camera sensitivity function is
sufficiently narrow, surface colors can be estimated mathematically. Experiments with simulation and real
data have been conducted to evaluate the effectiveness of the method. The results showed that although this
method is a perfect vehicle for simulation data, it produces significant errors with real data. A thorough in-
vestigation of the cause of errors indicates how important the assumptions on both blackbody illuminations
and narrowband camera sensitivities are to the method. Finally, we discuss the robustness of our method and
the limitation of solving color constancy using the illumination constraint. © 2007 Optical Society of America
OCIS codes: 150.0150, 150.2950.
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. INTRODUCTION
cquiring an object’s inherent color is important when
odeling a real-world object. Since color appearance is

ignificantly influenced by the illumination color, a
ethod to remove the latter and to estimate the actual

olor of the object’s surface, its “color constancy” in com-
uter vision, is required. (“Color constancy” often implies
ecovering an object’s actual surface color in the field of
omputer vision. Note that, to be precise, it is a psycho-
ogical term meaning the ability to perceive a color as con-
tant under varying illumination.) In general, surface-
olor estimation is achieved by capturing the object’s color
nder a known illuminant and dividing it by the illumi-
ation color. We cannot, however, apply this method when
he target objects are huge and are located outdoors, be-
ause the illumination condition is neither controllable
or known. It would be of great benefit to achieve color
onstancy only from colors received by sensors.

A number of color constancy methods have been pro-
osed by researchers [1–13]. We can categorize them into
wo groups: dichromatic-based methods and diffuse-based
ethods. Dichromatic-based methods [1–7] require the

resence of highlighting, while diffuse-based methods
8–13] require only body reflection. Since our primary ob-
ects are outdoor objects, and they have mainly body-
eflection components, this paper focuses on diffuse-based
ethods.
Most diffuse-based methods use a single input image of

bjects lit by a uniformly colored illumination. Usually
hese methods require strong constraints in the surface-
olor domain, such as a prior surface-color database, and
annot accurately handle images with few surface colors
11]. Alternatively, methods based on a varying illumina-
ion color were introduced by a few researchers [14–17].
hey found that the change of illumination can be a key
o solving the color constancy problem. D’Zmura [14] pro-
osed a method using approximated linear basis func-
1084-7529/07/071886-8/$15.00 © 2
ions to form a closed-form equation. One drawback of the
ethod is that it fails to provide robust estimations for

eal images. Ohta et al. [15] stabilized the estimation
ased on D’Zmura’s assumption and the CIE daylight con-
traint. Finlayson et al. [16] used a single surface color il-
uminated by two different illumination colors and per-
ormed the estimation by assuming that the illumination
olors form a line in an inverse-chromaticity space. Al-
hough the method is simple and elegant, the estimation
ends to be unstable because of noise and outliers. Bar-
ard et al. [17] utilized the Retinex algorithm [18] to au-
omatically obtain a surface color with different illumina-
ion colors and then applied the method of Finlayson et al.
16] to estimate varying illumination colors in a scene.

This paper proposes a new method for color constancy
hat inputs two colors taken under different illumination
nd estimates each illumination color numerically by re-
arding the blackbody radiation as the illumination spec-
ra. Blackbody radiation accurately models the light from
eated metals. Moreover, several researchers reported
hat it can predict the general shape of daylight illumina-
ions [6,19]. Therefore, blackbody radiation can be a bet-
er illumination model than the straight-line model used
n the previous methods [16,17]. In addition to the black-
ody illumination assumption, our method assumes that
he sensitivity of narrowband camera sensors is suffi-
iently narrow [16,17,20]. The method uses three sensor
alues at each wavelength. This is because it was de-
igned to use image values. However, any wavelength can
e chosen for the algorithm, which means that the algo-
ithm can be applied to a spectral separation method
ithout any loss of generality.
The rest of the paper is organized as follows: In Section

, we describe a problem definition of color constancy and
mathematical expression of illumination colors using

lackbody radiation. In Section 3, we describe the method
o estimate illumination colors. We provide simulations,
007 Optical Society of America
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xperiments, and results in Section 4. Since the results
ith real data included significant errors, we explore the

ause of those errors with additional experiments. In Sec-
ion 5, we discuss the robustness of our method, compare
he blackbody model with other illumination models, and
iscuss the limitation of solving color constancy using il-
umination constraint. Finally, in Section 6, we conclude
ur paper.

. THEORETICAL BACKGROUND
. Color Constancy
olors perceived by humans or camera sensors are light

ntensities that are emitted from a light source, reflected
y an object surface, and filtered by color sensors. Color
onstancy is an inverse process of these; i.e., we estimate
urface and illumination properties from a filtered color.
his paper defines color constancy as the separation of an

mage’s chromaticity ic into surface and illumination chro-
aticities sc and ec, using the following equation:

ic = scec, c = �r,g�. �1�

hromaticity is defined as a ratio of the R and G values to
he B value:

ir = IR/IB, ig = IG/IB. �2�

quation (1) holds by using this definition. We use the no-
ation r ,g for chromaticities and R ,G ,B for intensities to
istinguish them simply.
Equation (1) is derived by assuming a narrowband

amera model and converting intensities into chromatici-
ies defined by Eq. (2). Details are as follows: Image in-
ensities of diffuse objects taken by a digital color camera
an be described as Eq. (3):

Ic = ��
�

S���E���qc���d�, c = �R,G,B�, �3�

��ScEc, �Sc = S��c�,Ec = E��c��, �4�

here S��� is the surface spectral reflectance; E��� is the
llumination spectral power distribution; and qc��� is the
olor sensor sensitivity, where index c stands for the type
f sensors (R ,G, and B). The integration is done over the
isible spectrum ���, and � is the gain determined by the
perture, the integration time, and the electronic amplifi-
ation.

Next we introduce a narrowband camera model, which
ssumes that each color sensor has all its sensitivity con-
entrated on a single wavelength �c. That is, each sensi-
ivity is approximated by a Dirac delta function ��.� whose
enter wavelength is �c. Therefore, qc�������−�c�, and
e can subsequently obtain Eq. (4). Here �R ,�G ,�B are

he wavelengths on which the sensitivities are concen-
rated.

Color constancy focuses on recovering chromaticities
nstead of intensities. This is because there is a scale am-
iguity between the surface spectral reflectance and the
llumination spectral power distribution. We cannot dis-
inguish a dark surface with bright illumination from a
right surface with dark illumination. Therefore, we con-
ert the intensity space to the chromaticity space by sub-
tituting Eq. (4) into Eq. (2). Thus, we obtain Eq. (1). The
urface chromaticity �SR /SB ,SG /SB�t is rewritten as
sr ,sg�t, and the same is true for the illumination chroma-
icity.

. Illumination Chromaticity
his paper assumes that most illumination spectra can be
pproximated by blackbody radiation. Blackbody radia-
ion models not only the spectrum of sunlight, or of light
mitted from metals heated to high temperatures, but
lso that of common daylight, as several researchers have
eported [6,19]. The assumption is useful since an illumi-
ation chromaticity, which is a two-dimensional vector,
ecomes a function of a single scalar, temperature T. The
calar T is often called color temperature for representing
olor.

Using the blackbody assumption, an illumination chro-
aticity can be expressed as

er�T� =
M��R,T�

M��B,T�
, eg�T� =

M��G,T�

M��B,T�
, �5�

here e� = �er�T� ,eg�T��t is the illumination chromaticity;
��* ,T� is the spectral power of the blackbody radiation;
is temperature in kelvin; and �R ,�G ,�B are the center

avelengths of the camera sensitivity. The narrowband
ssumption and the chromaticity definition of Eq. (2) are
sed to derive the last equation.
From the Planck formula, M�� ,T� is

M��,T� = c1�−5�exp�c2/�T� − 1�−1, �6�

here c1 is 3.7418�10−16 (in Wm2), c2 is 1.4388�10−2 (in
K), and � is the wavelength (in m). Substituting Eq. (6)

nto Eq. (5), we obtain

er�T�� = kr

�B�T��

�R�T�� 	kr =
�B

5

�R
5 
 , �7�

eg�T�� = kg

�B�T��

�G�T�� 	kg =
�B

5

�G
5 
 , �8�

here T�=c2 /T and �*�T�� are defined as follows for sim-
licity:

�R�T�� = exp�T�/�R� − 1,

�G�T�� = exp�T�/�G� − 1,

�B�T�� = exp�T�/�B� − 1. �9�

. OUR APPROACH
. Problem Statement
he difference between our approach and conventional
pproaches is that we use the exact blackbody radiation
or the model of illumination colors. Consequently, the
olor constancy problem becomes equivalent to estimating

color temperature T. Equation (1) shows the interde-
endency between surface and illumination chromatici-
ies. Also, illumination chromaticity can be parameterized
y the color temperature T, as Eqs. (7) and (8) show.
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hus, when the color temperature T is known, the illumi-
ation chromaticity and then the surface chromaticity
an be calculated explicitly.

The equations to solve can be established as follows:
hen we observe a surface chromaticity s� under two

lackbody illuminations e��T1� and e��T2�, we can estimate
ach color temperature T1 and T2 from obtained colors i1

�

nd i2
� . Figure 1 illustrates those notations. Let the two

mage chromaticities be i1
� = �ir1 , ig1�t and i2

� = �ir2 , ig2�t. We
an derive the following equations, since the image chro-
aticities divided by their illumination chromaticities are

dentical to the surface chromaticity:

�r�T1�,T2�� = ir1�R�T1���B�T2�� − ir2�R�T2���B�T1�� = 0,

�10�

�g�T1�,T2�� = ig1�G�T1���B�T2�� − ig2�G�T2���B�T1�� = 0.

�11�

olor constancy will be solved if T1� and T2� are specified
rom those equations.

Detailed derivations of Eqs. (10) and (11) are as follows:
he image chromaticities divided by their illumination
hromaticities are identical to the surface chromaticity, as
q. (1) shows. Therefore, the following equations can be
erived:

ir1/er1 − ir2/er2 = 0, �12�

ig1/eg1 − ig2/eg2 = 0, �13�

hile Eqs. (7) and (8) can be converted as follows:

1/er = �R�T��/kr�B�T��, �14�

1/eg = �G�T��/kg�B�T��. �15�

y substituting Eqs. (14) and (15) into Eqs. (12) and (13),
qs. (10) and (11) are obtained.

. Solutions
quations (10) and (11) are difficult to solve by minimiz-

ng the square sum of Eqs. (10) and (11). This is due to the
xponential character of the functions in those equations.
ence, we propose a stable method using bracketing [21].
he overview of the algorithm is as follows:

1. First, we select the initial values of T1� and T2�. We
enote them as t1� and t2�, respectively.
2. Assuming that t1� is correct, we solve Eqs. (10) and

11) independently, using bracketing. Let the solutions be
� and t� .

ig. 1. (Color online) Problem statement. We estimate color
emperatures from image chromaticities taken under two black-
ody illuminations.
2r 2g
3. If t2r� and t2g� are sufficiently similar to each other, we
utput t1� and �t2r� + t2g� � /2.

4. Otherwise, we modify t1� so that the difference be-
ween t2r� and t2g� decreases. Again, t1� can be found using
racketing.
5. Go back to step 2.

In order to realize the above algorithm, we must clarify
he following two points:

• How to solve Eqs. (10) and (11).
• How to determine the value of t1� that decreases the

ifference between t2r� and t2g� , using the bracketing tech-
ique.

. Bracketing for Step 2
he following shows how to solve Eq. (10). The same ar-
ument can be applied to Eq. (11). Given an arbitrary T1�,
q. (10) has a unique solution of T2� on T2��0 (under the
ondition described below.) The solutions can be calcu-
ated by bracketing. The initial brackets are automati-
ally determined. They are derived from the shape of the
valuation function �r, which is illustrated in Fig. 2. As
he figure shows, �r is convex downward and has only one
ocal minimum. It starts from zero and gradually ap-
roaches infinity. Therefore, a solution of T2� always exists
nd can be calculated by bracketing. We can randomly se-
ect one side of the initial brackets and find the other side
y going up or down the slope until the sign of �r changes.
The shape of �* and the conditions for which those

quations have solutions are derived from the following
ropositions:

1. If T1� is positive, the function �* is convex downward.
2. That �*�T1� ,0� is zero for any T1�.
3. If T1� is positive, limT2�→	�*�T1� ,T2��= +	.
4. If T1� is positive, �r=0 has solutions on T2��0 if and

nly if

ir2�B�T1��/�R − ir1�R�T1��/�B � 0. �16�

imilarly, �g=0 has solutions on T2��0 if and only if

ig2�B�T1��/�G − ig1�G�T1��/�B � 0.

ig. 2. Shape of the evaluation function �r, given an arbitrary

1�. A solution of T2� always exists and can be calculated by brack-
ting. We let the initial value of t2� be one side of the brackets and
nd the other side by going up or down the slope until the sign of

changes.
r
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Brief proofs of the above propositions are as follows.
Proof of Proposition 1. We show that the second deriva-

ive of �r is positive at the extremum D. We used �r for
he proof, but the same argument can be done by using

g. We differentiate �r by T2�:

��r

�T2�
=

ir1

�B
�R�T1��exp�T2�/�B� −

ir2

�R
exp�T2�/�R��B�T1��.

rom the last equation, T2�, which gives the extremum,
an be calculated as

T2� =
�R�B

�R − �B
	log	 ir2

�R
�B�T1��
 − log	 ir1

�B
�R�T1��

 .

�17�

ccording to the Eq. (17), �r has a unique extremum.
rom the continuity of �r as well as ��r /�T2� ,�r is convex
pward or convex downward. We further differentiate �r
y T2�:

�2�r

�T2�
2

= 	 1

�B
−

1

�R

 ir1

�B
�R�T1��exp�T2�/�B� +

ir1

�B

��r

�T2�
.

ince ��r /�T2� is zero at the extremum,

�2�r

�T2�
2

= 	 1

�B
−

1

�R

 ir1

�B
�R�T1��exp�T2�/�B�.

he last equation is positive because �B
�R. Thus, �r is
onvex downward. �

Proposition 2. Trivial. �

Proposition 3. Trivial. �

Proof of Proposition 4. We prove only the former part,
ut the latter can be proved similarly. From Proposition 1,
r is convex downward. That is, the equation possibly has

wo solutions at most. One of those solutions is zero be-
ause of Proposition 2. Consequently, a solution on T2�
0 exists if the local minimum of �r exists on T2��0.

uch a condition can be written as Eq. (16) from Eq. (17).
solution on T2��0 certainly exists from Proposition 3.�

. Bracketing for Step 4
et us show how to determine a t1� that decreases the dif-

erence between t2r� and t2g� . If t1� increases/decreases, t2r�
t2g� increases/decreases around the true solution as illus-

rated in Fig. 3. Therefore, again we can calculate the so-
utions by bracketing. The facts are derived from the fol-
owing proposition:

ig. 3. Shape of T2r� −T2g� around the true solution. If T1�
ncreases/decreases, T2r� −T2g� increases/decreases. Therefore, the
olution can be calculated by bracketing.
5. Let the true solutions be T̂1� and T̂2� for Eqs. (10) and
11). If T1� increases/decreases around them, T2r� −T2g�

ncreases/decreases as long as T̂1�� T̂2�.
To automatically determine the initial brackets, we

eed to clarify the shape of the function where it crosses
he zero point. The Taylor expansion of Eqs. (10) and (11)
s used for this purpose. A detailed derivation of Proposi-
ion 5 is as follows:

Derivation of Proposition 5. We derive the Taylor series
f �r about a point �t1� , t2r� �,

�r = �r�t1�,t2r� � + 	 ir1�B�t2r� �

�R
exp	 t1�

�R



−
ir2�R�t2r� �

�B
exp	 t1�

�B


�t1� + 	 ir1�R�t1��

�B
exp	 t2r�

�B



−
ir2�B�t1��

�R
exp	 t2r�

�R


�t2r� ,

here �t1�=T1�− t1� ,�t2r� =T2r� − t2r� . We can simplify the last
quation using Eq. (10),

�r = ir1�R�t1���B�t2r� ��Hr�t1���t1� − Hr�t2r� ��t2r� �, �18�

here

Hr�t� =
exp�t/�R�

�R�R�t�
−

exp�t/�B�

�B�B�t�
.

n a similar way, we derive the Taylor series of �g about
nother point �t1� , t2g� �:

�g = ig1�G�t1���B�t2g� ��Hg�t1���t1� − Hg�t2g� ��t2g� �. �19�

rom the last two equations, T2r� −T2g� against �t1� can be
xpressed as

T2r� − T2g� = 	 Hr�t1��

Hr�t2r� �
−

Hg�t1��

Hg�t2g� �
�t1� + �t2r� − t2g� �.

round the true solutions T̂1� , T̂2�, the last equation be-
omes

T2r� − T2g� = 	Hr�T̂1��

Hr�T̂2��
−

Hg�T̂1��

Hg�T̂2��

�t1� . �20�

he following function

I�T1�,T2�� = Hr�T1��Hg�T2�� − Hg�T1��Hr�T2�� �21�

s obviously I�T1� ,T2��=−I�T2� ,T1��. We confirmed that
�T1� ,T2�� is positive if T1� is larger than T2� by calculating
very case from 2000 to 10,000 K with a 1 K interval.

. EXPERIMENTS AND RESULTS
. Evaluating Effectiveness Using Simulation Data
he effectiveness of the proposed method is evaluated
ith simulation data. In particular, we checked the fol-

owing two points: (1) average estimation error using
imulation data and (2) dependency on initial values.

The error was defined as the difference between esti-
ated and true reciprocal color temperatures. Reciprocal
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olor temperatures were proposed by Judd [22], in which
ifferences correspond more closely to equal perceptual
olor differences than to normal color temperatures. The
nit is called “mired” �=106 K−1� and is defined as Trec

106/T. Empirically, the just noticeably different (JND)
hromaticity difference is 5.5 mired [11,22]. The range
rom 2500 to 8500 K in color temperatures corresponds to
he range from 400 to 118 mired in reciprocal color tem-
eratures.

. Estimation Error with Simulation Data
Methods. We calculated the average estimation error

sing seven kinds of blackbody illuminants and six kinds
f reflectance. The total combination was 7C2�6=126. A
amera sensitivity, which is 1 at a particular wavelength
red, 624 nm; green, 548 nm; blue, 480 nm) and is 0 at oth-
rs was used. The seven color temperatures were 2500 K,
500 K, 4500 K, 5500 K, 6500 K, 7500 K, and 10,000 K.
he six reflectance patches were “Red,” “Blue,” “Green,”
Cyan,” “Magenta,” and “Yellow” in the GretagMacbeth
olorChecker, hereafter referred to as “Macbeth.” All the
eflectance data were obtained by measuring the spec-
rum of a color patch with a spectrometer (Photo Research
R-650) under a known illuminant.
Results. The average estimation error was 1.64�10−5

ired for T1 and 1.74�10−5 mired for T2, as shown in
able 1. The estimation by the previous method [16] is
lso shown for reference. The error converges to zero in
ll cases by using the proposed method.

. Dependency on Initial Values
Methods. We did our estimation 500 times with differ-

nt initial values but with the same reflectance and illu-
inants and calculated the average and the standard de-

iation of the estimation error. A camera sensitivity that
s 1 at the wavelength (red, 624 nm; green, 548 nm; blue,
80 nm) and is 0 at others was used. The color tempera-
ures of illuminants were 3500 and 7500 K. We used “red”
eflectance of the Macbeth ColorChecker. Initial values
ere randomly and uniformly distributed over the range
f the true temperature ±1000 K.

Results. The averages and the standard deviations of
he estimation error were 3.53�10−6 mired and 2.18
10−6 mired for T1, and 3.78�10−6 mired and 2.35
10−6 mired for T2, as shown in Table 2. The standard

eviation is nearly the estimation accuracy, which is
bout 10−6 due to the machine accuracy. Therefore, we
onclude that initial values do not affect the estimation.
owever, the result temperatures can be an impractical
umber, such as 2�1012 K if the relation (for instance,
1�T2) is reversed in the initial values �T1
T2�. In other

Table 1. Average Estimation Error in
126 Experiments Using Simulation Dataa

ethod
T1 Error
(mired)

T2 Error
(mired)

roposed method 1.64�10−5 1.74�10−5

revious method 5.11�10 5.52�10

aThe estimation error by the previous method �16� is also shown for reference.
ords, initial values can be any numbers if the relation
etween T1 and T2 is retained.

. Applying the Algorithm to Real Data
e conducted four sets of experiments to see whether the
ethod could work on real data. In the first set of experi-
ents, we tested our algorithm with various kinds of
atural illuminants and reflectances, and erroneous re-
ults were obtained. Therefore, we presumed there are
wo causes of the error. One cause might have been the
ailure of the blackbody radiation to accurately portray
he actual illuminants. To understand this problem, we
onducted the second set of experiments and observed
ow the violation of the blackbody assumption affects the
stimation. We also tested how different real spectra ap-
ear to blackbody radiations in the third set of experi-
ents. The other cause of error must have been the vio-

ation of the narrowband sensitivity assumption. We
ested how it affects the estimation in the fourth set of ex-
eriments.
The following explains experiments that were con-

ucted, and each focuses on: (1) estimation error on ex-
eriments with real data, (2) error caused by the assump-
ion of blackbody illumination, (3) difference between
pectra of the blackbody radiation and real spectra, and
4) error caused by the assumption of narrowband sensi-
ivity.

. Estimation Error with Real Data
Methods. We calculated the average estimation error

sing eight kinds of natural illuminants and six kinds of
eflectance. The total combination was 8C2�6=168. The
ensitivity of bandpass filters (MellesGriot 03FIV119,
3FIV111, 03FIV004) was used for the camera sensitivity.
heir full width at half-maximum was 10 nm, and their
enter wavelengths were as follows: red, 620 nm; green,
32 nm; and blue, 450 nm. They are shown as “Filter” in
ig. 4. Eight illuminants were A, B, C of CIE standard il-

uminants and Judd daylight phases D48, D55, D65, D75,
nd D100 [19]. The six reflectances were “Red,” “Blue,”
Green,” “Cyan,” “Magenta,” and “Yellow” of Macbeth.

Results. The average estimation error was 3.67�103

ired for T1, and 1.17�104 mired for T2, as shown in
able 3. The erroneous results force us to think what the
ubstantial causes of those errors are. As stated in the be-
inning of this subsection, there are two possible causes:
he violations of the blackbody assumption and the nar-
owband sensitivity assumption. The following experi-
ents investigated how the violations affect the estima-

ion. We discuss the robustness of the method in Section
.

Table 2. Average and Standard Deviation of
Estimation Errors in 500 Experiments

with Different Initial Values

arameter
T1 Error
(mired)

T2 Error
(mired)

verage 3.53�10−6 3.78�10−6

tandard deviation 2.18�10−6 2.35�10−6
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. Error Caused by the Blackbody Assumption
Methods. We plotted the change of the estimation error

gainst the error on illumination chromaticity. Let �er
nd �eg be the error on illumination chromaticity. One il-
umination chromaticity was chosen, and �er and �eg
ere added to it. �er and �eg were changed from 0 to 1%
y 0.1%. Camera sensitivity is 1 at these wavelengths
red, 624 nm; green, 548 nm; blue, 480 nm) and is 0 at oth-
rs. The color temperatures were 3000 and 9000 K. The
eflectance was “dark skin,” i.e., the top-left brown reflec-
ance of the Macbeth ColorChecker.

Results. The �T1 and �T2 in Fig. 5 show the estima-
ion error �T1 and �T2 against the percentage of the
odeling error �er and �eg of illumination colors. The
nit of the horizontal axis is percent, and that of the ver-
ical axis is mired. Figure 5 also shows the line of JND
hromaticity difference (5.5 mired). The figure shows that
he modeling error should be under about 0.1% if we want
he estimation error to be lower than 5.5 mired.

. Difference between Blackbody and Real Spectra
Methods. We calculated the difference between black-

ody illuminants and real illuminants. First, we searched
or the blackbody color temperature whose color is the
earest to that of the real illuminant. Then we calculated
he color difference between the two. The value that rep-
esents the difference is defined as (chromaticity of the
eal illuminant – chromaticity of the searched color
emperature)/(chromaticity of the searched color tempera-
ure). Spectra of the CIE standard illuminants (A,B,C)
nd Judd’s daylight phases (D48, D55, D65, D75, D100)
ere used for the calculation. A sensitivity that is 1 at
20 nm (red), 532 nm (green), 450 nm (blue) and 0 at oth-
rs was used.

Results. Table 4 shows the difference between the color
f blackbody and real spectra, Except for CIE standard il-
umination A, all illumination has more than a 0.1% dif-

Table 3. Average Estimation Error in
168 Experiments Using Real Dataa

ethod
T1 Error
(mired)

T2 Error
(mired)

roposed method 3.67�103 1.17�104

revious method 7.97�10 8.43�10

aThe estimation error by the previous method �16� is also shown for reference.

ig. 4. (Color online) Camera sensitivities used in the first ex-
eriments in Subsection 4.B. They are the sensitivities of band-
ass filters (MellesGriot 03FIV119, 03FIV111, 03FIV004).
erence. Therefore, the proposed method would produce
ignificant errors when those illuminants were used.

. Error Caused by the Narrowband Assumption
Method. We made a virtual sensitivity with variable

andwidth by using the Gaussian function. The � of the
aussian function was the parameter to change the band-
idth. The center wavelengths were as follows: red,
20 nm; green, 532 nm; and blue, 450 nm. Two examples
f those sensitivities are shown in Fig. 6. One with �

Table 4. Difference between Blackbody
and Real Spectraa

lluminants
�er

(%)
�eg

(%)
Nearest T

(K)

IE A 0.0029 −0.0165 2856
IE B 2.6368 −4.6126 5087
IE C 5.5397 −6.1154 7451
udd D48 −1.0788 2.0506 4818
udd D55 −1.0617 1.6286 5584
udd D65 −0.9358 1.1519 6698
udd D75 −0.7690 0.8096 7842
udd D100 −0.4606 0.3816 10852

aWe searched for the blackbody that has the color nearest to that of the real spec-
rum and calculated the chromaticity difference between the two. Note that the dif-
erence is defined in the color space of the sensitivity used in this experiment.

ig. 5. (Color online) Plots of the estimation error against the
iolation of the blackbody assumption; “�T1” and “�T2” express
he estimation error. JND chromaticity difference (5.5 mired) is
lso shown. To limit the estimation error to lower than 5.5 mired,
he violation should be under about 0.1%.
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5 nm is shown as “5,” and �=20 nm is shown as “20.”
olor temperatures of illuminants were 4000 K and
000 K. We used “dark skin,” “light skin,” and “Green” of
acbeth for the reflectance. Figure 6 shows them denoted

y “dark skin,” “light skin,” and “green,” respectively.
Results. Figure 7 shows the estimation error against

he bandwidth of a camera’s sensitivity. The more the

ig. 6. (Color online) Data used in the fourth experiments in
ubsection 4.B. (a) Virtual camera sensitivities. Here “5” and
20” are Gaussian functions whose standard deviation is 5 and
0 nm, respectively. (b) Reflectances. Three reflectances are “dark
kin,” “light skin,” and “Green” of the Macbeth ColorChecker.
Dark skin” varies linearly around wavelengths of a camera sen-
itivity compared with “green” and “light skin.”

ig. 7. (Color online) Plot of the estimation error against the
iolation of the narrowband sensitivity assumption. The more
he bandwidth of a camera sensitivity (the standard deviation �
f a Gaussian function) grows, the larger the estimation error be-
omes. Three reflectances, “dark skin,” “light skin,” and “green”
ere tested. The speed of the error growth depends on the

eflectance.
andwidth (the standard deviation � of a Gaussian func-
ion) grows, the larger the estimation error becomes. The
peed of the error growth depends on the reflectance. In
he case of “green” or “light skin” reflectance, the estima-
ion breaks down when the � of the Gaussian function is
arger than 5 nm, while in the case of “dark skin,” the es-
imation performs well until the a becomes 20 nm. If a re-
ectance varies linearly around wavelengths of a cam-
ra’s sensitivity, the integration in Eq. (3) becomes a
ultiplication by a constant number. Then the modeling

rror by the narrowband assumption can be ignored. Oth-
rwise, the modeling error affects the estimation. As Fig.

shows, the reflectance “dark skin” varies linearly
round wavelengths of a camera’s sensitivity compared
ith “green” and “light skin.” When � is set to 5 nm, half
f the test data set provided good results within the error
f 5.5 mired.

. DISCUSSION
ssuming illumination to be the blackbody radiation
ade the estimation sensitive to the modeling error.
here are two other ways to express illumination by a
ne-dimensional parameter. One is to use Wien’s approxi-
ation for blackbody radiation, and the other is to use the

traight-line approximation of Finalyson et al. The black-
ody illumination model can be compared with those
odels. Wien’s approximation to the Planck formula can

e expressed as

M��,T� � c1�−5 exp�c2/�T�−1. �22�

rom the last equation, we can derive the following rela-
ion [12,20]:

er = meg
A, �23�

here e� = �er ,eg�t is an illumination chromaticity, A
�1/�R−1/�B� / �1/�G−1/�B� and m=�G

5A / ��R
A�B

5A−5� are
onstant numbers characterizing a camera. If we substi-
ute the equation into Eqs. (12) and (13), we obtain two
edundant equations and cannot determine the solutions
or each color temperature. The Planck formula and

ien’s approximation are very similar when the color
emperature is low. Therefore, estimation of our method
ould be unstable if the two color temperatures of input

llumination are both low.
Finlayson et al. assumed that natural daylight illumi-

ation falls on a line [16] in an inverse-chromaticity
pace. Namely, they assumed the following relation:

1/eg = m�1/er� + c. �24�

ote that the last equation does not appear in Ref. [16],
ut it expresses its idea. Reference [16] assumes that a
et of all diagonal matrices mapping chromaticities under
rbitrary illumination �er ,eg� to canonical illumination
er

canonical ,eg
canonical� appears linear in the 1st–2nd diagonal

atrix component space. In other words, it assumes f�x�
m�x+c�, where x and f�x� correspond to the first and the
econd diagonal matrix components er

canonical /er and

g
canonical /eg, respectively. We can derive Eq. (24); since
oth er

canonical and eg
canonical could be any constant numbers,

hey can be replaced by (1, 1).
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If we substitute the last equation into Eqs. (12) and
13), we can solve all the unknown parameters explicitly.
This paper was inspired by this discovery.) The gradient

and the intercept c in Eq. (24) are constant numbers
alculated by least-square fitting to the data of CIE stan-
ards and Judd’s daylight phases. The difference between
hose illumination data points and the straight line is
hown in Table 5. Considering the results shown in Table
, the previous method, the straight-line model of Finlay-
on et al., is the most successful, and we think that this is
he only model for solving color constancy with illumina-
ion constraint. However, as shown in Tables 3 and 5,
ven the straight-line model cannot help suffering from
he effect of the modeling error.

Thus, the comparison of one-dimensional models of the
llumination shows that illumination color constraint can
ork by itself as long as there is no modeling error. How-
ver, the modeling error cannot be ignored and must be
onsidered in order to perform stable and accurate color
onstancy. We conclude that both illumination constraint
nd other rich information, such as assumptions on re-
ectances, should be taken into account for a robust esti-
ation.

. CONCLUSION
e proposed what we believe to be a new method to solve

he color constancy problem by exploiting blackbody ra-
iation. Based on the approach, we examined and ob-
ained the results in the following four areas: (1) Our
ethod performed considerably well in the experiments
ith simulation data. (2) To achieve the accuracy within

he error of just noticeable differences (JND), the model-
ng error between the blackbody radiation and the illumi-
ants should be lower than 0.1%. (3) Although the method
ses initial values, the results do not depend on how to
hoose them. (4) Most illuminants differ from the black-
ody radiation by more than 0.1%. The discussion about
he robustness of our method and the possibility of solv-
ng color constancy using a one-dimensional model of the
llumination shows that much information, such as as-
umptions about reflectances, should be taken into ac-
ount with the constraint on illumination to achieve

Table 5. Difference between Real Illumination
Colors and Colors Calculated from the

Straight-Line Illumination Model

lluminants
�er

(%)
�eg

(%)

IE A 6.9829 −7.2289
IE B −1.9758 4.0070
IE C −1.1578 2.7347
udd D48 −0.6929 1.3720
udd D55 −0.4382 0.9421
udd D65 −0.0239 0.0553
udd D75 0.3781 −0.9191
udd D100 1.0385 −2.6985
table and accurate color constancy.
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