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Abstract— The color appearance of an object is signifi-
cantly influenced by the illumination color. When illumina-
tion color changes, the color appearance of the object will
change accordingly, causing its appearance to be inconsistent.
Therefore, illumination condition must be set during the
process of data aquisition when making a color model of an
object. However, it is impossible to handle the illumination
condition in outdoor environment especially when the target
object is huge. To solve this, we propose a framework to
correct the white balance of each aquired image taken in
different time. Despite causing the inconsistency problem, the
change of illumination color can produce a crucial constraint
that can solve the problem itself. Finlayson et al. [10]
proposed a method using this constraint. They showed that,
by utilizing two different illuminations, it becomes effective
to estimate a consistent surface color. Unfortunately, their
method is a pixel-based operation that does not consider
the presence of noise, thereby making it less robust for
real-world images, particularly for those with insufficient
difference of illumination colors. In this paper, we propose
a more accurate and robust method that is extended from
their work. We found that by examining the presence of
noise and then eliminating it, we can obtain more accurate
and robust results. Our implementation on those two factors
using natural images shows the increase in accuracy and
robustness.

I. INTRODUCTION

Reflected light from an object is the product of sur-
face spectral reflectance and illumination spectral power
distribution. As a result, illumination color significantly
determines the object’s color appearance. When the il-
lumination color changes, the object color appearance
changes accordingly. As shown in Figure1, the effect of
illumination changes in creating realistic model is unig-
norable. To recover the actual color, which is consistent
with the change of illumination, a method to discount
the illumination color or usually called color constancy
is required.

Color constancy is one important subject in the field
of computer vision. Many algorithms in this field, such as
color-based object recognition, image retrieval, reflection
component separation, real object rendering, etc. require
the actual color of objects. Many methods have been
proposed to recover object actual color [3], [6], [11],
[21], [23], [24], [5], [9], [14], [19], [20], [12], [13],
[16], [15], [22]. Based on their input, we can categorize
them into dichromatic-based methods and diffuse-based
methods. Dichromatic-based methods [5], [9], [14], [19],
[20], [12], [13], [22] require the presence of highlighting,

while diffuse-based methods [3], [6], [11], [21], [23], [24]
require body only reflection.

Most diffuse-based methods use a single input image of
objects lit by a uniformly colored surface. While in most
situations these methods are practical, usually they require
strong constraints in surface colors domain, such as a prior
surface color database, and cannot accurately estimate
images with few surface colors [12], [21], [23], [24].
A few researchers alternatively introduce color constancy
methods based on varying or changing illumination color
[4], [10], [2]. They have found that, despite creating the
problem of color constancy, the change of illuminations
could be a crucial constraint to solve the color constancy
problem itself.

D’Zmura [4] proposed a method using approximated
linear basis functions to form a closed form equation. One
drawback of the method is that it fails to provide robust
estimations for natural images. Finlayson et al. [10] intro-
duced a method that uses a single surface color illuminated
by two different illumination colors. The main idea of
their approach is, if we have two different reflected lights
(pixels) produced by the same surface color but different
illumination colors; then, by dividing the first pixel with
all possible illumination colors (in which the illumination
color that illuminated the first pixel exists) and intersecting
to the second pixel that is also divided by all possible
illumination colors, an intersection point representing the
actual surface color is produced. The details of this method
will be explained in Section II-B. Barnard et al. [2] utilized
the retinex algorithm [18] to automatically obtain a surface
color with different illumination color, and then applied
the method of Finlayson et al. [10] to estimate varying
illumination colors in a scene.

In this paper, our goal is to estimate surface actual
color by changing the color of illuminations. We intend to
extend the method of Finlayson et al. [10], and to make the
method more robust and accurate, even for natural images
with relatively small difference of illumination colors. To
accomplish our goal, we include noise in the estimation
process. Unlike the method of Finlayson et al., we do not
set a fixed value of reference illumination. We compute
all intersections by changing the reference illumination,
and observe whether the noise effects are significant by
examining the intersection angle. If the noise is significant
then we eliminate it; otherwise, we ignore the noise.

To estimate the surface actual color successfully, the
method requires a number of assumptions: first, the illu-



Fig. 1. 3D model of the Bayon in Angkor, Cambodia. The color of the objects varies due to the use of textures taken in different time.

mination chromaticity forms a straight line in a diagonal
matrix component space. Second, the camera sensitivity
function is narrowband and known. Third, the output of
camera response is linear to the flux of incoming light
intensity.

The rest of the paper is organized as follows: in Sec-
tion 2, we first describe image color formation and the
definition of chromaticity ;second, we review the method
proposed by Finlayson et al., and third, we explain the
Planckian locus, which can substitute Judd et al. daylight
illuminations. In Section 3, we introduce our approach to
make the estimation more robust and accurate. We provide
the implementation of our approach and experimental
results for real images in Section 4. Finally in Section 5,
we conclude our paper.

II. THEORETICAL BACKGROUND

A. Reflection Model
Image Formation An image of a diffuse object taken by
a digital color camera can be described as:

Ic =
∫

Ω

S(λ)E(λ)qc(λ)dλ (1)

where Ic is the sensor response (RGB pixel values),
S(λ) is the surface spectral reflectance and E(λ) is the
illumination spectral power distribution, qc is the three-
element-vector of sensor sensitivity and index c represents
the type of sensors (R, G, and B). The integration is
done over the visible spectrum (Ω). In this model we
ignore camera noise and gain. By assuming narrowband
sensitivity that follows Dirac delta function, Equation (1)
can be simply written as:

Ic = ScEc (2)

where Sc = S(λc) and Ec = E(λc). If camera sensitivity
cannot be approximated by Dirac delta function (narrow-
band sensor), we can apply camera sharpening algorithms
proposed by [8], [7], [1].
Chromaticity Following Finlayson et al. [10], in this paper
we define chromaticity (or specifically image chromaticity)
as:

σc =
Ic

IB
(3)

Index c represents R and G color channels, since image
chromaticity is two-dimensional data. Equation(2) still
holds in this chromaticity space:

σc = scec (4)

where sc and ec corresponds to chromaticities of Sc and
Ec which we call surface and illumination chromaticity,
respectively. Based on this Equation(4), the transforma-
tion from an image chromaticity(σinp

c ) lit by a certain
illumination(einp) to another image chromaticity(σref

c ) lit
by reference illumination(eref ) can be described as:

σref
c =

eref
c

einp
c

σinp
c (5)

since the surface chromaticity does not change in both
situations. Therefore, according to Equation (5) we can ob-
tain the chromaticity in reference illumination successfully,
with the diagonal mapping whose elements are eref

c /einp
c .

B. Review of Finlayson’s method
The main idea of the method proposed by Finlayson et

al. [10] is to use two different reflected lights (pixels) pro-
duced by the same surface color but different illumination
colors. A brief explanation of their method is as follows.

Let us consider two observed image chromaticities σ1

and σ2 under two unknown different illuminations. And
let Φ be the set of all diagonal matrices mapping which
takes an image chromaticity (σx) to reference chromaticity
(σref ). Here, σref ’s element equals to sce

ref
c as we shown

in Equation(4). To find a reference chromaticity from given
σ1, σ2 and Φ can be described as:

Φσ1
⋂

Φσ2 = σref (6)

For the intersection in Equation (6) to exist and be
unique, the points of Φσ must lie on a continuous 1D
curve. It requires y in the following equation to be a
continuous 1D function of x, where x equals to eref

r /er ,
and y equals to eref

g /eg.

Φ �
[

x 0
0 y

]
(7)

To find an intersection, we need to know the function of
y, which Finlayson et al. assumed to be a straight line in
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Fig. 2. The straight line approximation of Judd et al’ and CIE
standard illumination.

diagonal matrix space. Figure 2 shows data plots of Judd et
al. [17] daylight phases D48, D55, D65, D75 and D100.
The data falls roughly on a straight line. Using analytic
derivation, it can be proved that the two lines (Φσ1 and
Φσ2) always intersect uniquely as long as the straight line
formed by Φ does not pass through (0,0). Then the surface
chromaticity can always be identified.

Figure3 shows an example of intersection resulting from
two different points that have different illumination color
but the same surface color.

C. Planckian Locus

To obtain the function of all possible illuminations,
Finlayson et al. use Judd et al.’s daylight illumination
phases (D48, D55, D65, D75, D100) and CIE standard
illuminations (A, B, C). It is reasonable and supports
the whole method well. However, the number of Judd
et al.’s daylight phases and CIE standard illuminations
are limited (only 8 different illuminations). In general
situations, this number is insufficient, because it cannot
cover the condition when the difference of illumination
color is relatively small. In order to resolve this problem,
instead of using Judd et al.’s daylight phases, we use
the Planckian locus, which is generated from the Plank
formula. In their paper, Judd et al. [17] have already shown
that their daylight illuminations can also be approximated
by the Planckian locus. Moreover, a number of papers
show that the Planck formula is a good representation
of almost all natural light sources, including outdoor and
indoor illuminants.

The Planck formula is described as:

M(λ) = c1λ
−5[exp(c2/λT ) − 1]−1 (8)

where c1 = 3.7418 × 10−16 Wm2, c2 = 1.4388 × 10−2

mK, λ is wavelength (m), and T is temperature in Kelvin.
By combining with known sensor sensitivity, we can obtain
a camera response of the Planck formula:

Ic =
∫

Ω

M(λ, T )qc(λ)dλ (9)
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Fig. 3. Example of estimating surface color as an intersecting
points from two inputs.

In Figure 2, the Planckian locus in the diagonal matrix
components space is also shown with Finlayson et al’s
line approximation. The actual shape of the locus in
the diagonal matrix components space is a curved line;
however, for a certain range of temperatures (4500 K -
8500 K) we can approximate it as a straight line, as shown
in Figure 2.

III. A ROBUST FRAMEWORK

The underlying idea of Finlyson et al.’s method that
turns the problem of illumination changes into a crucial
constraint is significant and applicable for real images.
Unfortunately, it still has a few drawbacks, and the main
drawback is its sensitivity to noise. Consider that, if the
input image chromaticities (σ1 and σ2) have noise, which
means its location in diagonal-matrix-components space is
deviated from their original position, then the intersection
of two lines (generated by Φσ1 and Φσ2) will be also
deviate from the correct location. The matter will be worse
if the illumination color difference of the two points is
considerably small.

We have conducted an investigation on these problems,
and discovered two important causes: intersection angle
and noise. We include these two factors in our method, of
which the details are as follows.

A. Intersection Angle

As already explained in Subsection II-B, to estimate
actual surface color, we need to intersect two straight lines
in the diagonal-matrix-component space. This intersection
has an angle with the intersection point as a center. In
Finlayson et al.’s method, this intersection angle is ignored
by setting a fixed reference illumination. In contrast, in
our method we consider the intersection angle as crucial
information, since it can determine whether the presence
of noise is significant.

By changing reference illumination chromaticity (eref ),
we can change the location of the intersection (σref )
made from two input image chromaticities (σ1 and σ2). A
suface chromaticity under varying illumination makes an



Fig. 4. Example of intersection with a small angle (under 90
degree) and large angle (over 90 degree)

upright curved line considering the shape of the Planckian
locus. And the two inputs (σ1 and σ2) and the intersection
(observed surface under reference illumination σref ) are
all on that line, which means to make an intersection from
two inputs is to draw a line from the two towards some
point on that line. Therefore, we can choose a reference
illumination so that an intersection can be located in the
middle of the two inputs.

Theoretically, an intersection (σref ) is located in the
middle of two inputs (σ1 and σ2), if the angle of the inter-
section is very wide (Figure 4). In other words, for image
chromaticities without noise or less significant noise, we
are always able to obtain an intersection with a very wide
angle (we set the threshold as more than 90 degrees from
our observation) by changing the reference illumination
(eref ). However, for real images with significant noise, an
intersection with such a wide angle possibly does not exist,
even if we use all possible illuminations. Therefore, we can
use the angle to examine whether the presence of noise is
significant. If the noise is significant, then we process it
further; otherwise, we ignore the noise.

Although the above angle examination gives a crucial
noise detection, it prompts another problem, namely, how
if the difference of two image chromaticities (σ1 and
σ2) is so small that using Judd et al.’s daylight and CIE
standard illuminations there is no value of σref located
in the middle of the two point? Indeed the number of
Judd et al.’s daylight and CIE standard illuminations is
limited and cannot cover such a condition. Fortunately,
Judd et al.’s daylight illuminations can be approximated
by the Planckian locus. We can substitute Judd et al.’s
illuminations with Planckian locus that has continuous
data, making us always able to find σref located in the
middle of the points.

B. Noise

Noise makes the locations of σ1 and σ2 deviate from
the original ones. If their deviations are significantly large,
then the method will produce poor estimation. In the
previous subsection, we know that by observing intersec-

Fig. 5. Illustration of the influence of noise in determining surface
color

tion angles, we can determine whether we can ignore the
presence of noise.

Figure 5 shows the illustration of noise’s influence in
determining intersection. If one of the two input image
chromaticities suffer from noise, then the actual image
chromaticity must be between σreal

c +δerr and σreal
c −δerr .

Or in other expression, by assuming noise is positive,
the input image chromaticity can be described as: σ1

c =
σreal

c + δerr . Consequently, based on the analysis of
intersection angles, we can decrease the value of σ1

c until
there is an intersection angle that is more than 90 degrees,
which can produce a more accurate estimation of σref

c .
The first problem with above noise computation is, it

is unknown whether the value of δerr should be decreased
or increased, because we do not know whether noise is
positive or negative. Fortunately, if there are two image
chromaticities with the same surface color but different
illumination color, then according to the Planckian locus,
both image chromiticities must lie on a horizontal curved
line in a two dimensional diagonal-matrix-components
space, in which the left point should be lower than the
right point. Thus, if oppositely the right point is lower than
the left, we should increase its value step by step until we
find an intersection angle that is more than 90 degrees.

The second problem is how we can determine which
of the two image chromaticities should be changed (by
decreasing or increasing). If we change both of them si-
multaneously, besides it being computationally expensive,
we possibly cannot obtain the correct estimation. Thus,
to resolve this problem, we approximately choose one of
them to be constant, and change the value of another. We
consider it as a reasonable approximation, because as long
as two points have angle of more than 90 degrees, and
their position is not so different horizontally, then even if
we wrongly choose image chromaticity to be changed, it
does not significantly affect the result of estimation.

Using this kind of increment and decrement noise value
can allow us to robustly estimate the surface color even
if the noise parameters are unknown. This is one of the
advantages of using our framework.



IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Implementation In our implementation, we captured
two images of a scene from a fixed object and camera po-
sition but under different illumination temperatures. From
the same pixel location of the two images, we convert the
sensor response values into image chromaticity values. By
intersecting the lines, we can obtain a value of σref and its
intersection angles. But instead of using a fixed value of
reference illumination, we calculate all intersections from
all values of temperature at certain intervals. We check
whether there is any intersection that has an angle of more
than 90 degrees. If there is an angle with such a degree,
then we can obtain the surface color, as we know its
reference illumination. On the other hand, if there is no
more-than-90-degrees intersection angle, then we choose
the righter point to be increased with a small scalar value
iteratively until there is at least one angle that is more than
90 degrees. In our experiments, we set the temperature
interval value equal to 100, and the noise increment value
equal to 0.01.
Experimental Condition We conducted several experi-
ments on real images, taken using a SONY DXC-9000,
a progressive 3 CCD digital camera, by setting its gamma
correction off. To ensure that the outputs of the camera
were linear to the flux of incident light, we used a
spectrometer: Photo Research PR-650. We used planar
and convex objects to avoid interreflection, and excluded
saturated pixels from the computation. For evaluation, we
compared the results with the average values of image
chromaticity of a white reference image (Photo Research
Reflectance Standard model SRS-3), captured by the same
camera.
Experimental results Figure 6.a and 6.b show input
image chromaticities of pixels taken from an outdoor
object illuminated by cloudy sky-light at 15:00 and 18:00.
The actual surface color obtain using the standard white
reference is shown in 6.c. Figure 6.d shows our surface
color estimation, while 6.d is produced by Finlayson et
al.’s method with D65 as reference illumination. We have
several conditions of experiment with the same object,
and our estimation produced consistent results, while the
results of Finlayson et al.’s method were so inconsistent
that the result could be green or blue, which is far from
the ground truth. Figure 7 shows a scene of one of our two
input images. This image was taken at 18:05 illuminated
by cloudy daylight. Another input (Figure 8) was taken
at 15:05 also illuminated by cloudy daylight on the same
day. Figure 9 shows our estimation result of the image.
To produce this image, we considered only pixels whose
intensities are not saturated and above camera dark. We
computed the average of the estimated illumination color
of image shown in Figure 7, and normalized that image.
Note that we excluded the needles of the tower’s clock as
well as moving leaves from the computation by evaluating

the image chromaticity difference. Figure 10 is the result
based on the standard white reference which shows that
our result is quite good.
Evaluation In our evaluation using the Macbeth color
checker illuminated by various condition of outdoor sun-
light and skylight, the average error of our estimation in
term of CIE chromaticity definition (σc = Ic/(ΣIi)) is
0.063, while that of Finlayson et al.’s method is 0.11. The
maximum error of our estimation is 0.16, and Finlayson et
al.’s maximum error is 0.32. This error evaluation is mostly
done with regard to the red and blue channels. Since, in
the green channel, either our method or Finlayson et al.’s
method gave considerably accurate results as Planckian-
based illumination change is relatively small in this chan-
nel.

Fig. 6. Comparison results between our proposed method and
Finlayson et al.’s method.

V. CONCLUSION

We have proposed an extended version of Finlayson
et al.’s method [10]; our purpose is to make it more
robust and accurate. The underlying idea of our approach
is to exploit the possibilities to control the intersection
angle and noise. This approach makes the method more
applicable in various conditions of natural images. And, the
experimental results show the effectiveness of our method.
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